Les ARNms des cellules eucaryotes sont liés à des protéines de liaison aux ARNs (RBPs) et empaquetés au sein d’assemblages macro-moléculaires appelés granules RNP. Dans les cellules neuronales, les granules RNP de transport sont impliqués dans le transport d’ARNms spécifiques jusqu’aux axones et dendrites, ainsi que dans leur traduction locale en réponse à des signaux externes. Bien que peu de choses soient connues sur l’assemblage et la régulation de ces granules in vivo, des résultats récents ont indiqué que la présence de domaines de type prion (PLDs) dans les RBPs facilite les interactions protéines-protéines et protéines-ARN, favorisant ainsi la condensation de complexes solubles en granules RNP. La RBP conservée Imp est un composant central de granules RNP qui sont transportés dans les axones lors du remodelage neuronal chez la drosophile. De plus, la fonction de Imp est nécessaire au remodelage des axones lors de la maturation du système nerveux de drosophile. Une analyse de la séquence de la protéine Imp a révélé qu’en plus de quatre domaines de liaison aux ARNs, Imp contient un domaine C-terminal désordonné enrichi en Glutamines et Serines, deux propriétés caractéristiques des domaines PLDs. Lors de ma thèse, j’ai étudié la fonction de ce PLD dans le contexte de l’assemblage et du transport des granules RNP. J’ai observé en culture de cellules que les granules Imp s’assemblent en absence de PLD, bien que leur nombre et leur taille soient augmentés. Des protéines présentant une séquence PLD mélangée, au contraire, s’accumulent dans des granules au nombre et à la taille normale, indiquant que l’état désordonné de ce domaine, et non sa séquence primaire, est essentiel à l’homéostasie des granules. De plus, des expériences de FRAP réalisées en culture de cellule et in vivo ont révélé que le domaine PLD de Imp favorise la dynamique des granules. In vivo, ce domaine est nécessaire et suffisant à l’accumulation axonale de Imp. Comme montré par une analyse en temps réel, l’absence de domaine PLD aboutit également à une diminution du nombre de granules axonaux motiles. Fonctionnellement, le domaine PLD de Imp est essentiel au remodelage neuronal car des protéines sans ce domaine ne sont pas capables de supprimer les défauts de repousse axonale observés après inactivation de imp. Enfin, la génération d’un variant de Imp dans lequel le domaine PLD a été déplacé en N-terminus a montré que les fonctions du PLD dans le transport des granules et dans leur assemblage sont découplées, et que la modulation des propriétés des granules Imp médiée par le domaine PLD n’est pas nécessaire au remodelage neuronal in vivo. En conclusion, mes résultats ont montré que le domaine PLD de Imp n’est pas nécessaire à l’assemblage des granules RNP Imp, mais régule leur nombre et leur dynamique. De plus, mon travail a mis en évidence une fonction inattendue pour un domaine PLD dans le transport axonal et le remodelage des neurones lors de la maturation du système nerveux. / Eukaryotic mRNAs are bound by RNA Binding Proteins (RBP) and packaged into diverse range of macromolecular assemblies named RNP granules. In neurons, transport RNP granules are implicated in the transport of specific mRNAs to axons or dendrites, and in their local translation in response to external cues. Although little is known about the assembly and regulation of these granules in vivo, growing evidence indicates that the presence of Prion Like domains (PLD) within RBPs favours multivalent protein–protein and protein-RNA interactions, promoting the transition of soluble complexes into RNP granules. The conserved RBP Imp is as a core component of RNP granules that are actively transported to axons upon neuronal remodelling in Drosophila. Furthermore, Imp function was shown to be required for axonal remodelling during Drosophila nervous system maturation. Analyses of the domain architecture of the Imp protein revealed that, in addition to four RNA binding domains (RBD), Imp contains a Cterminal domain showing a striking enrichment in Glutamines and Serines, which is one of the characteristics of a PLD. During my PhD, I explored the function of the PLD in the context of granule assembly and transport. In cultured cells, I observed that Imp granules assembled in the absence of the PLD, however their number and size were increased. Proteins with scrambled PLD sequence accumulated in granules of normal size and number, implying that the degree of disorder of this domain, and not its sequence, is essential for granule homeostasis. Moreover, FRAP experiments, performed on cultured cells and in vivo, revealed that Imp PLD is important to maintain the turnover of these granules. In vivo, this domain is both necessary and sufficient for efficient transport of Imp granules to axons. These defects are associated with a reduction on the number of motile granules in axons. Furthermore, mutant forms lacking the PLD do not rescue the axon remodelling defects observed upon imp loss of function. Finally, a swapping experiment in which I moved Imp PLD from the C-terminus to the N-terminus of the protein revealed that the functions of Imp PLD in granule transport and homeostasis are uncoupled, and that PLD-dependent modulation of Imp granule properties is dispensable in vivo. Together, my results show that Imp PLD of is not required for the assembly of RNP granules, but rather regulates granule number and dynamics. Furthermore, my work uncovered an unexpected in vivo function for a PLD in axonal transport and remodelling during nervous system maturation.
Identifer | oai:union.ndltd.org:theses.fr/2018AZUR4099 |
Date | 13 November 2018 |
Creators | Vijayakumar, Jeshlee Cyril |
Contributors | Côte d'Azur, Besse, Florence |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds