Return to search

Dual-specific protein phosphatases in the <i>Archaea</i>

Three distinct families of PTPs, the conventional (cPTPs), low molecular weight (LMW PTPs), and Cdc25 PTPs, have converged upon a common catalytic mechanism and active site sequence, mainly, the phosphate-binding loop encompassing the PTP signature motif (H/V)<b>C</b>(X)₅<b>R</b>(S/T) and an essential Asp residue on a surface loop. There is little sequence similarity among the three families of phosphatases. All known LMW PTP remove phosphoryl groups esterified to the hydroxyl amino acid: tyrosine, whereas all members of the Cdc25 family are dual-specificity protein phosphatases that dephosphorylate all the hydroxyl amino acids: tyrosine, serine and threonine. The cPTP family primarily functions as tyrosine phosphatases, but it also includes dual-specific members.

ORFs encoding potential cPTPs have been identified in five archaeal species: <i>Methanobacterium thermoautotrophicum</i>, <i>Methanococcus jannaschii</i>, <i>Thermococcus kodakaraensis</i>, <i>Pyrococcus horikoshii</i>, and <i>S. solfataricus</i>. Only one has been partially characterized, <i>Tk</i>-PTP from <i>T. kodakaraensis</i>. Hence, our current body of knowledge concerning the functional properties and physiological roles of these enzymes remains fragmented.

The genome of <i>S. solfataricus</i> encodes a single conventional protein tyrosine phosphatase, SsoPTP. SsoPTP is the smallest known archaeal PTP (18.3 kDa) with a primary amino acid sequence that conforms to the cPTP protein tyrosine phosphatase paradigm, HCX₅R(S/T).

Relatively little is known about its mode of action " whether it follows the conventional PTP mechanism or employs a different route for catalysis " or its physiological role.

ORF <i>sso2453</i> from the genome of <i>Sulfolobus solfataricus</i>, encoding a protein tyrosine phosphatase, was cloned and its recombinant protein product, SsoPTP, was expressed in <i>E. coli</i> and purified by immobilized metal affinity chromatography. SsoPTP displayed the ability to dephosphorylate protein-bound phosphotyrosine as well as protein-bound phosphoserine/phosphothreonine. SsoPTP hydrolyzed both isomers of naphthyl phosphate, an indication of dual specificity. The four conserved residues within the presumed active site sequence: Asp⁶⁹, His⁹⁵, and Arg¹⁰², and the invariant Gln¹³⁹ residue were essential for catalysis, as it was predicted for the established members of the PTP family in both bacteria and eukaryotes. A substrate trapping protein variant, SsoPTP-C96S/D69A, was constructed to isolate possible SsoPTP substrates present in <i>S. solfataricus</i> cell lysates. Several potential substrates were isolated and identified by mass spectroscopy. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/37625
Date03 May 2010
CreatorsDahche, Hanan Mohamad
ContributorsBiochemistry, Kennelly, Peter J., Li, Jianyong, Helm, Richard F., Bevan, David R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationDahche_HM_D_2010.pdf

Page generated in 0.0024 seconds