HMGA1 Proteine sind kleine, basische, Nicht-Histon Proteine, die in Lösung keine Struktur aufweisen, durch drei AT-Haken, als DNA-Bindungsmotive, gekennzeichnet sind und präferentiell an die kleine Furche der DNA binden. Als differenziell exprimierte Architekturelemente des Chromatins erfüllen sie wichtige Funktionen bei der Regulation DNA abhängiger Prozesse in Zellen und während Entwicklungsprozessen. Aberrante Expressionen führen zu Entwicklungsdefekten und Krebs. In dieser Arbeit wurde der Einfluss von HMGA1 Proteinen auf die Organisation des Chromatins untersucht. Als Modell diente dabei zunächst die Differenzierung von C2C12 Muskelvorläuferzellen. Wie in einer früheren Arbeit gezeigt wurde, ist die Herunterregulation von HMGA1a essentiell für den Eintritt von C2C12 Zellen in die Myogenese. Eine konstante Überexpression von HMGA1a-eGFP hingegen verhindert die Muskeldifferenzierung durch Beeinflussung der Expression myogenesespezifischer Gene und Etablierung einer stabilen Chromatinstruktur. Wie in der vorliegenden Arbeit herausgefunden wurde, nimmt die differenzielle HMGA1a Expression nicht nur Einfluss auf die Expression muskelspezifischer Gene, sondern auch auf die globale Zusammensetzung des Chromatins durch eine reduzierte Expression von H1 Histonen und einer aberranten Expression von HMGB1, HMGN1 und HP1 Proteinen. HMGA1a wurde zusammen mit ORC Proteinen eine Funktion bei der Definition von Replikationsursprüngen in eukaryotischen Zellen zugesprochen. ORC Proteine wurden auch als Komponenten des Heterochromatins und als Interaktionspartner von HP1α identifiziert. Hier konnte mit Hilfe von Co-Immunpräzipitationen, Pull-down Assays und Verdrängungsexperimenten gezeigt werden, dass HMGA1 ein weiterer, direkter Interaktionspartner von ORC Proteinen im Heterochromatin ist und zusammen mit HP1α kooperiert. Pull-down-, Verdrängungs- und siRNA-Experimente zeigten zudem, dass HMGA1 zwar nicht direkt mit HP1α interagiert, die Kooperation der Proteine über ORC aber dennoch wichtig für die Aufrechterhaltung der Heterochromatinsstruktur ist. Damit erweisen sich HMGA1 Proteine als wichtige Stabilisierungsfaktoren des Heterochromatins. Bislang ging man davon aus, dass HMGA1 Moleküle linear, also eindimensional, an ein DNA Molekül binden. Das Vorhandensein von drei DNA-Bindungsmotiven und die eher struktur- als sequenzabhängige Bindung an die DNA lassen vermuten, dass HMGA1 Proteine auch gleichzeitig an benachbarte DNA-Stränge, also auch dreidimensional, binden könnten. Bekräftigt wurde diese Vermutung durch die Bildung von Chromatinaggregaten in Zellen die HMGA1a-eGFP überexprimierten. Dies wurde mittels konfokaler und hochauflösender Mikroskopie (dSTORM) analysiert. Um das Potential einer DNA-Quervernetzung durch HMGA1 Proteine nachzuweisen, wurde eine neue Methode entwickelt. Mit Hilfe eines neuartigen DNA Cross-linking Assays wurde nachgewiesen, dass HMGA1 Proteine in der Lage sind, zwei individuelle DNA Stränge zu vernetzen. Zudem wurde eine neue Domäne in HMGA1 entdeckt die maßgeblich zum Cross-linking beiträgt. Elektronenmikroskopische Analysen bestätigten, dass HMGA1 Proteine in der Lage sind Kreuzungen und Schleifen in DNA Molekülen zu erzeugen. Diese Ergebnisse unterstützen die Vermutung, dass HMGA1 Proteine im Zellkern ein DNA Gerüst bilden können, das Einfluss auf die zelltypische Chromatinorganisation nimmt und dadurch DNA abhängige Prozesse beeinflusst. In wie weit eine HMGA1 induzierte DNA Quervernetzung in vivo zum Beispiel in Chromozentren von C2C12 Zellen oder in Krebszellen, in denen HMGA1 Proteine stark überexprimiert sind, eine Rolle spielen, müssen künftige Untersuchungen zeigen. In dieser Arbeit konnte also gezeigt werden, dass HMGA1 Proteine die Chromatinstruktur auf drei Ebenen organisieren können: Durch Beeinflussung der Chromatinzusammensetzung durch Veränderung der Expression von Chromatinproteinen, durch Interaktion mit anderen Architekturelementen des Chromatins und durch Organisation eines potentiellen DNA Gerüsts. / HMGA1 proteins are small basic non-histone proteins characterized by three DNA binding domains, the AT-hooks, which bind to the minor groove of DNA. As differentially expressed architectural chromatin proteins, they perform important functions in the regulation of DNA dependent processes and in development. Aberrant expression leads to developmental defects and cancer. In this thesis the influence of HMGA1 proteins on chromatin organization is investigated. Initially C2C12 myogenic precursor cells were studied, which can be differentiated to myotubes. Previously it had been shown that down-regulation of HMGA1 proteins is crucial for the initiation of myogenic differentiation. Constant over-expression of HMGA1a-eGFP prevents myogenic differentiation by influencing the expression of myogenic genes and by the establishment of a stable chromatin structure. Here it was shown that the differential HMGA1 expression does not only influence the expression of myogenic specific genes but also affects total chromatin composition. This was shown by reduced and aberrant expression of chromatin proteins such as histone H1, HMGB1, HMGN1 and HP1 proteins. Recently it was demonstrated that HMGA1 together with ORC proteins function in origin definition in eukaryotic cells. ORC proteins were also identified as components of heterochromatin and direct interaction partners of HP1α. Here, it was shown by co-immunoprecipitation, pull-down assays, siRNA and displacement experiments that HMGA1 proteins can interact with ORC proteins directly and that they can cooperate with HP1α in heterochromatin. It could be shown that HP1α indeed does not directly interact with HMGA1 but together with ORC proteins is relevant for heterochromatin maintenance. Thus HMGA1 proteins turned out to be important stabilizers of heterochromatin. Until recently it was thought that HMGA1 proteins bind DNA collinearly. In principle the three independent DNA binding AT-hooks of HMGA1 also suggest a concomitant binding to neighboring DNA strands, which could lead to a three dimensional stabilization of DNA. This assumption was affirmed by the occurrence of chromatin aggregates in HMGA1a-eGFP overexpressing cells, which was analyzed by confocal and high resolution (dSTORM) microscopy. By using a newly developed DNA cross-linking assay, which allows the analysis of a DNA crosslinking capability of a protein, it was proven that HMGA1 proteins can bind two individual DNA fibers simultaneously. Furthermore a novel domain in HMGA1 proteins was discovered which is significantly involved in the DNA cross-linking. Electron microscopic analyses confirmed that HMGA1 proteins can specifically generate crossings and loops in DNA molecules. These results support the assumption that HMGA1 proteins can create a DNA scaffold that has influence on cell typical chromatin organization and possibly also affects DNA dependent processes. To what extent HMGA1 induced DNA cross-linking plays a role in vivo, for example in the organization of chromocenters of C2C12 cells or in cancer cells, where HMGA1 proteins are over-expressed, will need to be elucidated in further experiments In summary, this work shows, that HMGA1 proteins influence chromatin structure and composition by affecting the expression of chromatin proteins, by interacting with other architectural chromatin proteins or by producing a higher organization of chromatin on its own.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:6098 |
Date | January 2011 |
Creators | Vogel, Benjamin |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds