Cell adhesion is essential to cell motility and tissue integrity and is regulated by the Integrin family of transmembrane receptors. Integrin binds to ligand extracellularly and provide anchor to the intracellular cytoskeleton via adhesion scaffolding proteins. In order to link cell to the surrounding matrix Integrin needs to be activated. Intracellular activation signals induce perturbations in Integrin cytoplasmic domain that are translated into a conformational change in extracellular region for high affinity ligand binding. Integrin engagement by matrix, in turn, triggers the assembly of adhesion complexes. Such early adhesions promote cytoskeletal organization with subsequent contractile activity that exerts forces against initial Integrin-matrix adhesions. In response to force, Integrin strengthens the interaction with matrix through its clustering and successive recruitment of additional adhesion components. These bidirectional regulatory loops mediated by such interactions are largely dependent on the unique function of Integrin adhesion components. / We demonstrate a novel role for the PDZ/LIM domain protein Zasp as a core component of Integrin adhesions. Specifically, Zasp colocalizes with Integrins at focal adhesion in cultured cells and myotendinous junctions in Drosophila embryos. In both cases elimination of Zasp modifies Integrin function causing consequently defects in cell spreading and muscle attachment. Zasp supports Integrin adhesion to the extracellular matrix that is required to withstand tensile forces exerted during cell spreading and muscle contraction. Furthermore, we found that the distribution of Zasp in muscle Z-lines is essential to orchestrate the cross-linking of alpha-Actinin and Actin filaments. Disruption of Zasp leads to loss of muscle cytoarchitecture, pointing to a larger role for Zasp in sarcomere assembly. Finally, we demonstrate that Zasp, in addition to alpha-Actinin, physically interacts with the Integrin- and Actin-bound cytoskeletal protein Talin. / Collectively, our results point to a dual role for Zasp as a structural scaffold. First it regulates Integrin adhesion to the extracellular matrix by interacting with the head domain of Talin at the myotendinous junctions. Second, Zasp controls sarcomere assembly by tethering the presarcomeric alpha-Actinin component to the tail domain of Talin. Zasp finding as a crucial adhesion component provides further insights on the mechanism underlying Integrin-mediated adhesion.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.115688 |
Date | January 2009 |
Creators | Jani, Klodiana. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Biology.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 003132447, proquestno: AAINR66314, Theses scanned by UMI/ProQuest. |
Page generated in 0.0023 seconds