Ces dernières années, des travaux importants ont été observés dans le développement du contrôle prothétique afin d'aider les personnes amputées du membre supérieur à améliorer leur qualité de vie au quotidien. Certaines prothèses myoélectriques modernes des membres supérieurs disponibles dans le commerce ont de nombreux degrés de liberté et nécessitent de nombreux signaux de contrôle pour réaliser plusieurs tâches fréquemment utilisées dans la vie quotidienne. Pour obtenir plusieurs signaux de contrôle, de nombreux muscles sont requis mais pour les personnes ayant subi une amputation du membre supérieur, le nombre de muscles disponibles est plus ou moins réduit selon le niveau de l’amputation. Pour accroître le nombre de signaux de contrôle, nous nous sommes intéressés au biceps brachial, vu qu’anatomiquement il est formé de 2 chefs et que de la présence de compartiments a été observée sur sa face interne. Physiologiquement, il a été trouvé que les unités motrices du biceps sont activées à différents endroits du muscle lors de la production de diverses tâches fonctionnelles. De plus, il semblerait que le système nerveux central puisse se servir de la synergie musculaire pour arriver à facilement produire plusieurs mouvements. Dans un premier temps on a donc identifié que la synergie musculaire était présente chez le biceps de sujets normaux et on a montré que les caractéristiques de cette synergie permettaient d’identifier la posture statique de la main lorsque les signaux du biceps avaient été enregistrés. Dans un deuxième temps, on a réussi à démontrer qu’il était possible, dans un cube présenté sur écran, à contrôler la position d’une sphère en vue d’atteindre diverses cibles en utilisant la synergie musculaire du biceps. Les techniques de classification utilisées pourraient servir à faciliter le contrôle des prothèses myoélectriques. / In recent years, important work has been done in the development of prosthetic control to help upper limb amputees improve their quality of life on a daily basis. Some modern commercially available upper limb myoelectric prostheses have many degrees of freedom and require many control signals to perform several tasks commonly used in everyday life. To obtain several control signals, many muscles are required, but for people with upper limb amputation, the number of muscles available is more or less reduced, depending on the level of amputation. To increase the number of control signals, we were interested in the biceps brachii, since it is anatomically composed of 2 heads and the presence of compartments was observed on its internal face. Physiologically, it has been found that the motor units of the biceps are activated at different places of the muscle during production of various functional tasks. In addition, it appears that the central nervous system can use muscle synergy to easily produce multiple movements. In this research, muscle synergy was first identified to be present in the biceps of normal subjects, and it was shown that the characteristics of this synergy allowed the identification of static posture of the hand when the biceps signals had been recorded. In a second investigation, we demonstrated that it was possible in a virtual cube presented on a screen to control online the position of a sphere to reach various targets by using muscle synergy of the biceps. Classification techniques have been used to improve the classification of muscular synergy features, and these classification techniques can be integrated with control algorithm that produces dynamic movement of myoelectric prostheses to facilitate the training of prosthetic control.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/23537 |
Date | 07 1900 |
Creators | He, Liang |
Contributors | Mathieu, Pierre A. |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | Thèse ou mémoire / Thesis or Dissertation |
Page generated in 0.0028 seconds