Although the origins of Radio Frequency Identification (RFID) technology can be traced back for many years, it is only recently that RFID has experienced rapid growth. That growth is mainly due to the increasing application of this technology in various supply chains. The widening of the implementation of RFID technology in supply chains has posed many challenges and one of the biggest is the degradation of the RFID system performance when tagging metallic objects, or when the RFID system operates in a metallic environment. This thesis focuses on tackling the issue of having metallic objects in an Ultra High Frequency (UHF) RFID system. The work presented in this thesis contributes to the research on UHF RFID systems involving metallic objects in several ways: (a) the development of novel RFID tags that range from a simple tag for general applications to tags suitable for metallic object identification; (b) the tag designs target the criteria of minimal tag size and cost to embrace the vision of item level tagging; and (c) the analysis of the performance (through theoretical predictions and practical measurements) of an RFID tag near metallic structures of various shapes and sizes. The early part of this thesis provides a brief introduction to RFID and reviews the background information related to metallic object identification for UHF RFID systems. The process of designing a basic tag, and additional information and work done related to the process, are outlined in the early part of this thesis. As part of this fundamental research process, and before proceeding to the designing of tags specifically for metallic objects, a small and low cost RFID tag for general applications was developed. Details of the design of this tag, with the application of this tag for animal identification, are presented. In the later parts of the work, different tag design approaches were explored and this has generated three rather different RFID tags suitable for attaching to metallic objects. The aim of this research is not just to design tags for metallic objects but also to tackle the constraints of having tags that are small in size, cost effective and suited in size to some familiar objects. Hence, in the later part of this research, the work took a step further where one of the three tags designed for metallic objects addressed the challenge of identifying individual small metallic beverage cans. RFID involves tagging of different types of objects and a tag may be required to be located in a depression of a metallic object. In the final part of this research, the read range performance of one of the RFID tags designed for metallic objects was analysed when the tag was located in metallic depressions of various shapes and sizes. The analysis was performed from a combination of theoretical calculation and simulation perspectives, and also through practical real-life measurements. Metallic objects are very common around us. Their presence is unavoidable and so to identify them, having the appropriate RFID tags suitable for operation on metallic surfaces is essential. Frequently the tags must be small in size and low in cost to allow identification at item level of individual small metallic objects. Understanding and being aware of the potential effects of metallic structures of various shapes and sizes on the tag performance is thus important. The research in this thesis into all the above can bring the industry further towards full deployment of RFID down to item level tagging. / Thesis (Ph.D.) - University of Adelaide, School of Electrical and Electronic Engineering, 2008
Identifer | oai:union.ndltd.org:ADTP/264565 |
Date | January 2008 |
Creators | Ng, Mun Leng |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Page generated in 0.0016 seconds