Return to search

Integrons in pseudomonads are associated with hotspots of genomic diversity

Thesis (PhD)--Macquarie University, Division of Environmental & Life Sciences, Department of Biological Sciences, 2008. / Bibliography: p. 257-274. / Literature review -- General materials and methods -- Characterisation of strain collection -- Distribution of integrons and gene cassettes in pseudomonas -- Genomic context of pseudomonas integrons -- Evolutionary analysis of pseudomonas spp. integrons 199 -- Final discussion -- Appendix -- References. / Integrons associated with mobile genetic elements have played a central role in the emergence and spread of multiple antibiotic resistance in many pathogenic bacteria. However, the discovery of integrons in the chromosomes of diverse, non-pathogenic bacteria suggests that integrons have a broader role in bacterial evolution. The Pseudomonas stutzeri species complex is a well studied model for bacterial diversity. Members of the complex are genetically closely related, but sub-taxa are not able to be defined by exclusively shared sets of phenotypic characters. Rather, on the basis of total DNA:DNA similarity, Ps. stutzeri strains have been divided into 17 different groups (termed genomovars). Two Ps. stutzeri strains have been found to contain Chromosomal Integrons (CIs). This thesis involved exploration of the hypothesis that a CI was present in the common ancestor of the Ps. stutzeri species complex and assessed the impact of integrons on diversity across all Pseudomonads. The history and significance of integrons is discussed in Chapter 1 as part of a literature review, and general materials and methods are provided in Chapter 2. Chapters 3 - 6 comprise the sections in which data generated during my PhD project are presented. A comprehensive analysis of the relationships between the strains being analysed is presented in Chapter 3. In Chapter 4, results of PCR and hybridisation screening for integrons across the strain collection are presented. In Chapter 5 the recovery of additional integrons and in depth sequence analysis of the recovered integrons are described. Finally, Chapter 6 contains statistical analyses of integron-associated genes and Chapter 7 contains a final discussion the most significant findings. Twenty-three Pseudomonas spp. strains were screened for the presence of integrons. All but three were found to contain integron-like sequences; however, most integron sequences recovered contained inactivated core integrons. viii Despite having a chromosomal locus, integrons in Pseudomonas were found to have properties indicative of frequent horizontal transfer. Evidence was also obtained which suggests that integrons have been acquired at the same locus on multiple independent occasions. This has not been observed in other families of chromosomal integrons and suggests that the loci at which integrons in Pseudomonas are found are hotspots for recombination. / Mode of access: World Wide Web. / xiii, 274 p. ill

Identiferoai:union.ndltd.org:ADTP/285171
Date January 2008
CreatorsWilson, Neil Lewis
PublisherAustralia : Macquarie University
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright disclaimer: http://www.copyright.mq.edu.au, Copyright Neil Lewis Wilson 2008.

Page generated in 0.0163 seconds