Return to search

Psychophysiological Monitoring of Crew State for Extravehicular Activity

A spacewalk, or extravehicular activity (EVA), is one of the most mission critical and physically and cognitively challenging tasks that crewmembers complete. With next-generation missions to the Moon and Mars, exploration EVA will challenge crewmembers in partial gravity environments with increased frequency, duration, and autonomy of operations. Given the distance from Earth, associated communication delays, and durations of exploration missions, there is a monumental shift in responsibility and authority taking place in spaceflight; moving from Earth-dependent to crew self-reliant. For the safety, efficacy, and efficiency of future surface EVAs, there is a need to better understand crew health and performance. With this knowledge, technology and operations can be designed to better support future crew autonomy.

The focus of this dissertation is to develop and evaluate a psychophysiological monitoring tool to classify cognitive workload during an operationally relevant EVA task. This was completed by compiling a sensor suite of commercial wearable devices to record physiological signals in two human research studies, one at Virginia Tech and one at NASA Johnson Space Center. The approach employs supervised machine learning to recognize patterns in psychophysiological features across different psychological states. This relies on the ability to simulate, or induce, cognitive workload in order to label data for training the model. A virtual reality (VR) Translation Task was developed to control and quantify cognitive demands during an immersive, ambulatory EVA scenario. Participants walked on a passive treadmill while wearing a VR headset to move along a virtual lunar surface. They walked with constraints on time and resources, while simultaneously identifying and recalling waypoints in the scene. Psychophysiological features were extracted and labeled according to the task demands, i.e. high or low cognitive workload, for the novel Translation Task, as well as for the benchmark Multi-Attribute Task Battery (MATB). Predictive models were created using the K Nearest Neighbor (KNN) algorithm.

The contributions of this dissertation span the simulation, characterization, and modeling of cognitive state. Ultimately, this work tests the limits of extending laboratory psychophysiological monitoring to more realistic environments using wearable devices, and of generalizing predictive models across participants, times, and tasks. This work paves the way for future field studies and real-time implementation to close the loop between human and automation. / Doctor of Philosophy / A spacewalk is one of the most important and physically and mentally challenging tasks that astronauts complete. With next-generation missions to the Moon and Mars, exploration spacewalks will challenge astronauts in reduced-weight environments (1/6 and 1/3 Earth's gravity) with longer, more frequent spacewalks and with less help from mission control. To keep astronauts safe while exploring there is a need to better understand astronaut health and performance (physical and mental) during spacewalks. With knowledge of how astronauts will respond to high workload and stressful events, we can plan missions and design tools that can best assist them during spacewalks on the Moon and Mars when help from Earth mission control is limited. Traditional tools of quantifying mental state are not suitable for real-time assessment during spacewalks. Current methods, including subjective surveys and performance-based computer tests, require time and attention to complete and cannot assess real-time operations.

The focus of this dissertation is to create a psychophysiological monitoring tool to measure mental workload during a virtual reality (VR) spacewalk. Psychophysiological monitoring uses physiological measures, like heart rate and breathing rate, to predict psychological state, like high workload or stress. Physiological signals were recorded using commercial wearable devices in two human research studies, one at Virginia Tech and one at NASA Johnson Space Center. With machine learning, computer models can be trained to recognize patterns in physiological measures for different psychological states. Once a model is trained, it can be tested on new data to predict mental workload. To train and test the models, participants in the studies completed high and low workload versions of the VR task. The VR task was specifically designed for this study to simulate and measure performance during a mentally-challenging spacewalk scenario. The participants walked at their own pace on a treadmill while wearing a VR headset to move along a virtual lunar surface, while balancing their time and resources. They were also responsible for identifying and recalling flags along their virtual path.

Ultimately, this work tests the limits of extending laboratory psychophysiological monitoring to more realistic environments using wearable devices, and of generalizing predictive models across participants, times, and tasks. This work paves the way for future field studies and real-time implementation to close the loop between human and automation.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/103386
Date19 May 2021
CreatorsWusk, Grace Caroline
ContributorsDepartment of Biomedical Engineering and Mechanics, Weaver, Ashley Anne, Abercromby, Andrew Frank Jorgensen, Knapp, Richard Benjamin, Srinivasan, Divya
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds