Return to search

Crack-bridging behaviour of polymer fibres in Strain-Hardening Cement-based Composites (SHCC) subject to alternating tension-compression cyclic loading

Concrete is undoubtedly the most important construction material, with widespread applications worldwide. Despite its many advantages, however, concrete exhibits low tensile strength and tends toward brittle failure. The most promising approach for improvement of its tensile properties is the addition of fibres. By addition of only one or two percent of high-performance polymer fibres to a cementitious matrix, strain-hardening can be developed under uniaxial tensile loading. Such materials yield multiple cracking and permit large inelastic deformation in a hardening regime, for which they are usually called Strain-Hardening Cement-based Composites (SHCC). However, the behaviour of SHCC depends on loading conditions, where the most critical case is cyclic loading in tension-compression regimes, in which the ductile properties of the composite can be lost after only several hundred cycles due to degradation of the fibre bridging capacity.
The thesis at hand presents the results of experimental investigations into the crack-bridging behaviour of polymer fibres in SHCC subject to alternating tension-compression loading regimes. The investigations covered monotonic loading as well. The experimental programme included fibre tension tests; single-sided, single fibre pull-out tests; double-sided, single and multiple fibre pull-out tests; and microscopic analysis of the specimens after testing. The bridging and pull-out behaviour of single PVA fibres embedded in cement-based matrices were comprehensively characterised and described by a new model. The Locking Front Model explains different interaction phenomena between fibre and matrix after full de-bonding. Furthermore, the interaction and damage mechanisms under cyclic loading were understood. The damage types depend on various parameters such as fibre inclination angle to the crack plane. Above all, however, the deterioration of bridging capacity results from the damage of the fibres between the crack faces in alternating tension-compression regime. The severity of damage is mostly determined by the number of cycles, compressive stress level, and crack width.
The results of the experimental investigations at the micro- and meso-levels were analysed further to establish a multi-scale approach for describing the behaviour of a single crack in the composite. The Non-Simultaneity Hypothesis is proposed, which suggests that the crucial events of fibre bridging action may occur non-simultaneously with increasing crack opening displacement, and the bridging parameters may be reliably determined based on the overall behaviour of a group of specimens. Additionally, the Three-Stage Micromechanics-based Model is developed to describe the bridging behaviour of the fibres with different embedded lengths. The parameters of the model were obtained according to the overall bridging behaviour and the Non-Simultaneity Hypothesis. The parameters were validated by comparing prediction with experiment and observation of bridging behaviour in the tests with varied embedded lengths and multiple fibres. In the framework of the novel concept Criterion-Dependent Reference Volume (CDRV), the effective volume fractions of the fibres assuming non-uniform distribution of the fibres were determined over the length of a hypothetical specimen. The behaviour of a single crack was then predicted at the composite level and compared to the equivalent experimental results. The whole multi-scale approach manifests a considerable capability for analysing the behaviour of Fibre-Reinforced, Cement-based Composite (FRCC). Finally, the concept of Representative Continuum with Predetermined Cracking Sequence (RCPCS) is briefly explained for describing the stress-strain behaviour of SHCC in further development of the multi-scale approach. / Beton ist weltweit mit seinen vielfältigen Anwendungsmöglichkeiten zweifelsohne der wichtigste Baustoff. Trotz der vielen Vorteile weist der Beton eine niedrige Zugfestigkeit und ein sprödes Versagen auf. Eine vielversprechende Methode zur Verbesserung dieser stellt seine Bewehrung mit Kurzfasern dar. Mit lediglich ein oder zwei Volumengehalt Prozent von Hochleistungspolymerfasern könnte das Dehnungs-Verfestigungsverhalten (engl.: Strain-hardening behaviour) unter einachsiger Zugbelastung erreicht werden. Allerdings ist das Verhalten des SHCC (engl.: Strain-Hardening Cementitious Composite) abhängig von dem Belastungsregime. Am kritischsten ist das zyklische Zug-Druck-Wechselbelastungsregime, denn dadurch wird kein duktiles Verhalten nach nur mehreren hundert Zyklen möglich sein, weil eine starke Degradation des Faserüberbrückungsvermögens stattfindet.
Diese Dissertation beschreibt die Ergebnisse von experimentellen Untersuchungen des Überbrückungsverhaltens der Polymerfasern in SHCC mit dem Schwerpunkt Zug-Druck-Wechselbelastung. Außerdem umfassen die Untersuchungen monotone Belastung. Das experimentelle Programm enthält Faserzugversuche, einseitige- und zweiseitige Einzelfaserauszugsversuche sowie mikroskopische Analysen an den Probekörpern nach den Experimenten. Das Überbrückungs- und Auszugsverhalten der einzelnen PVA-Faser eingebettet in einer zementbasierten Matrix wurden ausführlich charakterisiert und mit einem neuen Modell beschrieben. Das „Locking Front Model“ erläutert spezifische Phänomene des Zusammenspiels der PVA-Faser und Matrix nach der vollen Ablösung. Zusätzlich wurden die Mechanismen der Zusammenwirkung und Schädigungen unter zyklischer Belastung dargestellt. Die Schädigungsarten sind abhängig von den verschiedenen Parametern wie z. B. Faserwinkel zur Rissebene. Vor allem resultierte die Verschlechterung der Überbrückungseigenschaften aus den Schädigungen der Faser zwischen den Rissebenen im Zug-Druck-Wechselbelastungsregime. Die Intensität der Schädigungen ist meistens mit Zyklenanzahl, zyklischer Druckbelastung und Rissbreiten korreliert.
Die Ergebnisse der experimentellen Untersuchungen auf der Mikro- sowie Mesoebene wurden weiter ausgewertet, um einen Multiskalenansatz zur Bestimmung des Verhaltens eines einzelnen Risses im Werkstoff zu schaffen. Die „Non-Simultaneity Hypothese“ wurde vorgeschlagen, welche aussagt, den entscheidenden Vorgänge des Überbrückungsverhaltens der Fasern möglicherweise nicht gleichzeitig bei Vergrößerung der Rissöffnung auftreten. Deswegen sollten die Überbrückungsparameter am besten basierend auf dem allgemeinen Verhalten von vielen Proben in einer Gruppe bestimmt werden. Außerdem wurde das „Three-Stage Model“ zur Bestimmung des Überbrückungsverhaltens der Fasern mit verschiedenen Einbettungslängen entwickelt. Die Parameter des Modells wurden basierend auf dem allgemeinen Überbrückungsverhalten und der „Non-Simultaneity Hypothese“ bestimmt. Dann werden diese Parameter mit dem Überbrückungsverhalten anderer Einbettungslängen oder multipellen Fasern validiert. Im Rahmen des neuen Konzeptes, „Criterion-Dependent Reference Volume (CDRV)“, werden der effektive Volumenanteil der Faser in der Länge einer hypothetischen Probe aus Faserbeton mit ungleichmäßiger Faserverteilung bestimmt. Das Verhalten eines einzelnen Risses wird dann auf der Werkstoffebene bestimmt und mit den experimentellen Ergebnissen verglichen. Der gesamte Multiskalenansatz manifestiert wesentliche Fähigkeit zur Analyse des Verhaltens von Faserbeton. Schließlich wird ein neues Konzept, „Representative Continuum with Predetermined Cracking Sequence (RCPCS)“, zur Bestimmung der Spannungs-Dehnungsbeziehung des hochduktilen Betons (SHCC) als zukünftige Entwicklungsmöglichkeit des vorliegenden Multiskalenansatzes kurz vorgestellt.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:76931
Date09 December 2021
CreatorsRanjbarian, Majid
ContributorsMechtcherine, Viktor, Anders, Steffen, Synytska, Alla, Technische Universität Dresden, Viktor Mechtcherine
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds