Return to search

A photovoltaic-powered pumping system

This thesis studies the optimal design for a photovoltaic-powered medium-head (30 meters) water pumping system, with the emphasis on improving the efficiency and reducing the maintenance requirements of the electrical subsystem. The reduction of maintenance requirements is realized by replacing the conventional brush-type permanent magnet dc motor with a brushless dc (BLDC) motor. Different BLDC motor control techniques such as position-sensorless operation, sinusoidal and trapezoidal excitations are investigated. The improvement in efficiency is achieved by maximizing the output power from the photovoltaic array and by minimizing the losses in various parts of the electrical sub-system. A microprocessor-based double-loop maximum power tracking scheme is developed for maximization of the photovoltaic array output power. Over 99% utilization factor is achieved for a typical clear day regardless of the season of the year. The system losses are minimized mainly by performing loss analysis and selecting most suitable switching topologies and switching components. Experimental results show that the combined converter-motor efficiency is comparable to those of high-efficiency brush-type dc motor systems. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/30592
Date January 1989
CreatorsLiu, Guang
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0016 seconds