Return to search

Development of a process for fabricating high-aspect-ratio, meso-scale geometries in stainless steel

Miniature energy and chemical systems (MECS) are miniature thermal, fluid, and chemical devices in the mesoscale size range between a sugar cube and a human fist. MECS take advantage of improved rates of mass and heat transfer that have been observed at the microscale. There are many potential applications for MECS, including manportable cooling and decentralized chemical processing. However, this potential has not been realized due to limitations in microfabrication. MECS devices require: 1) the fabrication of complex geometries incorporating microscale features; and 2) the thermal, mechanical and chemical properties of engineering metals. This thesis centers on developing a process for producing high-aspect-ratio, MECS devices in stainless steel.
In order to achieve this goal, laser ablation and diffusion bonding were employed in a metal microlamination (MML) process. The process involves stacking and bonding a series of laminates with low-aspect-ratio features to produce a composite device with high-aspect-ratio features (20:1). Laser ablation was used to form many laminates of 0.003" 302 stainless steel. These laminates were then joined via diffusion bonding.
The process developed in this thesis is unique in that it: 1) permits the MECS designer greater freedom in specifying microchannel widths; and 2) has produced microscale features in excess of 20:1 aspect ratio. Microchannels and microfins in excess of 20:1 aspect ratio were fabricated in stainless steel using this method. Resultant microchannels were tested by flowing air through them at various flow rates and measuring the resulting pressure drop. Experimental results were compared with theoretical calculations and other technical literature. Findings suggest that the
preliminary efforts to build a MECS device resulted in significant air blockage in the microchannel passageways. Sources of this blockage include bent fins, warpage and misalignment among others. Further process refinements are needed to prove the economic viability of this process. / Graduation date: 1998

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/33710
Date05 May 1998
CreatorsWalker, Benjamin A.
ContributorsPaul, Brian K.
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0015 seconds