Return to search

Velocity memory

It is known that primates are sensitive to the velocity of moving objects. We can also remember velocity information after moving objects disappear. This cognitive faculty has been investigated before, however, the literature on velocity memory to date has been fragmented. For example, velocity memory has been disparately described as a system that controls eye movements and delayed discrimination. Furthermore, velocity memory may have a role in motion extrapolation, i.e. the ability to judge the position of a moving target after it becomes occluded. This thesis provides a unifying account of velocity memory, and uses electroencephalography (EEG) to explore its neural basis. In Chapter 2, the relationship between oculomotor control and motion extrapolation was investigated. Two forms of motion extrapolation task were presented. In the first, participants observed a moving target disappear then reappear further along its path. Reappearance could be at the correct time, too early or too late. Participants discriminated reappearance error with a two-alternative forced choice button press. In the second task, participants saw identical targets travel behind a visible occluder, and they attempted to press a button at the exact time that it reached the other side. Tasks were completed under fixation and free viewing conditions. The accuracy of participant's judgments was reduced by fixation in both tasks. In addition, eye movements were systematically related to behavioural responses, and small eye movements during fixation were affected by occluded motion. These three results imply that common velocity memory and pre-motor systems mediate eye movements and motion extrapolation. In Chapter 3, different types of velocity representation were explored. Another motion extrapolation task was presented, and targets of a particular colour were associated with fast or slow motion. On identical-velocity probe trials, colour still influenced response times. This indicates that long-term colour-velocity associations influence motion extrapolation. In Chapter 4, interference between subsequently encoded velocities was explored. There was robust interference between motion extrapolation and delayed discrimination tasks, suggesting that common processes are involved in both. In Chapter 5, EEG was used to investigate when memory-guided tracking begins during motion extrapolation. This study compared conditions where participants covertly tracked visible and occluded targets. It was found that a specific event related potential (ERP) appeared around 200 ms post occlusion, irrespective of target location or velocity. This component could delineate the onset of memory guided tracking during occlusion. Finally, Chapter 6 presents evidence that a change in alpha band activity is associated with information processing during motion extrapolation tasks. In light of these results, it is concluded that a common velocity memory system is involved a variety of tasks. In the general discussion (Chapter 7), a new account of velocity memory is proposed. It is suggested that a velocity memory reflects persistent synchronization across several velocity sensitive neural populations after stimulus offset. This distributed network is involved in sensory-motor integration, and can remain active without visual input. Theoretical work on eye movements, delayed discrimination and motion extrapolation could benefit from this account of velocity memory.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:532213
Date January 2011
CreatorsMakin, Alexis David James
ContributorsPoliakoff, Ellen ; El-Deredy, Wael
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/velocity-memory(c5c1c28d-0a23-44a5-93bc-21f993d2e7ad).html

Page generated in 0.0025 seconds