Composite beams are frequently used in building, combining a steel beam with either a concrete-filled steel deck or solid concrete slab. To ensure proper composite action, shear connectors, typically in the form of headed shear studs, are utilized. Traditionally, the strength assessment of these headed shear studs is made using empirical design specifications that are based on push-out tests, which have been widely conducted and standardized over the years. However, the standardized push-out tests have short-comings, such as uneven slab bearing, slab buckling, questions regarding the distribution of load to each stud, etc.
A study was conducted to evaluate and compare the existing push-out test setup with two alternative test setups. The study also aimed to examine the behavior of headed shear studs in composite beams having deck deeper the current allowable limit of 3 in., as specified by American Institute of Steel Construction (AISC) design specification. While the standard specification allows for steel decks with rib heights of up to 3 in., there are deck profiles deeper than 3 in. available in the market. Utilizing these deeper decks in composite beams offers several advantages, including faster and more cost-effective construction by reducing the number of beams required.
This research therefore found that a major challenge in creating an alternative test setup involves eliminating moment at the interface between the concrete-filled steel deck and the steel beam. This moment leads to tension in the headed shear stud/stud group closest to the actuator, thus affecting the shear strength of the headed shear studs. Further, these headed shear studs have significant strength when used with 3.5 in. decks but further research is necessary. / Master of Science / Composite beams are widely used in building construction, combining a steel beam with either a concrete-filled steel deck or a solid concrete slab. To ensure their proper function, shear connectors are used, typically in the form of headed shear studs. Traditionally, the strength of these shear studs is determined using standardized push-out tests, but these tests some challenges like uneven slab bearing, questions about even load distribution, etc.
In this study, the existing push-out test setup was evaluated and compared with two alternative setups. The behavior of headed shear studs in composite beams with deeper decks than the current allowable limit specified by design standards was also investigated. Using these deeper decks offers advantages such as faster and more cost-effective construction.
One major challenge in creating an alternative test setup was eliminating the moment at the interface between the concrete-filled steel deck and the steel beam. This moment caused tension in the headed shear stud closest to the actuator, impacting the overall shear strength of the studs. Additionally, it was found that these shear studs show promising strength when used with 3.5 in. decks, but more research is needed to fully understand their capabilities.
By exploring new test setups and considering deeper decks, this research contributes to improving the design and construction of composite beams, making them more efficient and reliable for future building projects.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/116084 |
Date | 22 August 2023 |
Creators | Tawade, Omkar Ashok |
Contributors | Civil and Environmental Engineering, Eatherton, Matthew Roy, Easterling, William S., Roberts-Wollmann, Carin L. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0025 seconds