Return to search

The Creation of an Anodic Bonding Device Setup and Characterization of the Bond Interface Through the Use of the Plaza Test

Recently there has been an increased focus on the use of microfluidics for the synthesis of different products. One of the products proposed for synthesis is quantum dots. Microfluidics often uses Polydimethylsiloxane for structure in microfluidic chips, but quantum dots use octadecene in several synthesis steps. The purpose of this work was to create a lab setup capable of anodically bonding 4” diameter wafers, and to characterize the bond formed using the Plaza test chip so that microfluidic devices using glass and silicon as substrates could be created.
Two stainless steel electrodes placed on top of a hot plate were attached to a high power voltage supply to perform anodic bonding. A Plaza test mask was created and used to pattern P type silicon wafers. The channels etched were between 300 and 500nm deep and ranged between 1000µm and 50µm. These wafers were then anodically bonded to Corning 7740 glass wafers. Bonding stopped once the entire surface of the wafer was bonded, determined by visual inspection. All bonds were formed at 400°C and the bond strength and toughness between wafers bonded at 400V and 700V was compared.
A beam model was used to predict the interfacial fracture toughness, and the stress at the bond was calculated with a parallel spring model. By measuring the crack length of the test structures under a light microscope the load conditions of the beam could be found. It was concluded that the electrostatic forces between the wafers give the best indication of what the bond quality will be. This was seen by the large difference in crack length between samples that were bonded using a thick glass wafer (1 mm) and a thin glass wafer (500µm). The observed crack lengths for the thick glass wafers were between 40 and 60µm. Thin glass wafers had a crack length between 20 and 40µm. The fracture toughness was calculated using the beam model approximation. Fracture toughness of the thin glass wafers was 7MPa m1/2, and of the thick glass wafers was 30 MPa m1/2. The fracture toughness of the thick glass wafers agreed with results found through the use of the double cantilever beam samples in literature. The maximum observed interfacial stress was 70 MPa.
Finally, to measure the change in the size of the sodium depletion zone formed during bonding, samples were placed under a scanning electron microscope (SEM). Depletion zones were found to be between 1.1 and 1.4µm for thin glass samples that were bonded at 400 and 700 volts. This difference was not found to have a significant effect on the strength or fracture toughness observed. Thicker glass samples could not have their depletion zone measured due to SEM chuck size.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1736
Date01 March 2012
CreatorsMcCrone, Tim M
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.002 seconds