Return to search

The regulatory roles of PyrR and Crc in pyrimidine metabolism in Pseudomonas aeruginosa

The regulatory gene for pyrimidine biosynthesis has been identified and designated pyrR. The pyrR gene product was purified to homogeneity and found to have a monomeric molecular mass of 19 kDa. The pyrR gene is located directly upstream of the pyrBC' genes in the pyrRBC' operon. Insertional mutagenesis of pyrR led to a 50- 70% decrease in the expression of pyrBC', pyrD, pyrE and pyrF while pyrC was unchanged. This suggests that PyrR is a positive activator. The upstream regions of the pyrD, pyrE and pyrF genes contain a common conserved 9 bp sequence to which the purified PyrR protein is proposed to bind. This consensus sequence is absent in pyrC but is present, as an imperfect inverted repeat separated by 11 bp, within the promoter region of pyrR. Gel retardation assays using upstream DNA fragments proved PyrR binds to the DNA of pyrD, pyrE, pyrF as well as pyrR. This suggests that expression of pyrR is autoregulated; moreover, a stable stem-loop structure was determined in the pyrR promoter region such that the SD sequence and the translation start codon for pyrR is sequestered. β-galactosidase activity from transcriptional pyrR::lacZ fusion assays, showed a two-fold in increase when expressed in a pyrR- strain compared to the isogenic pyrR+ strain. Thus, pyrR is negatively regulated while the other pyr genes (except pyrC) are positively activated by PyrR. That no regulation was seen for pyrC is in keeping with the recent discovery of a second functional pyrC that is not regulated in P. aeruginosa. Gel filtration chromatography shows the PyrR protein exists in a dynamic equilibrium, and it is proposed that PyrR functions as a monomer in activating pyrD, pyrE and pyrF and as a dimeric repressor for pyrR by binding to the inverted repeat. A related study discovered that the catabolite repression control (Crc) protein was indirectly involved in pyr gene regulation, and shown to negatively regulate expression of PyrR at the posttranscriptional level.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2875
Date08 1900
CreatorsPatel, Monal V.
ContributorsO'Donovan, Gerard A., Benjamin, Robert C., Shanley, Mark S., White, Olivia
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Patel, Monal V., Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0012 seconds