Return to search

Setting up and Application of Infrared Temperature-Sensing System

The study aims to develop an infrared temperature-sensing system by applying to thermal radiation theory. The system consists of an optic unit, a photodetector, and an electronic unit. This system detects thermal radiation at 1310 nm wavelength, the temperature range of the system is 600~4000¢J, rise time 2£gs, spatial resolution 400£gm. The calibration was performed in the temperature low at 1200¢J by using a K-type thermocouple that can gain between temperature and output voltage relations, but beyond the temperature 1200¢J applying to Planck¡¦s law as calculate to predict. In the calibrated temperature range, the measurement error is ¡Ó80¢J for the low temperatures and ¡Ó20¢J for the high temperatures. The system was used to measure temperature variation during Nd:YAG pulse laser welding process. Experiments ware performed with stainless steel plates as specimen radiation by a laser pulse of 7ms duration time and various energy in the rang of 1245~5313mJ. The experimental results show the feasibility of the infrared temperature-sensing system in application of Nd:YAG pulse laser welding process.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0809106-141520
Date09 August 2006
CreatorsHung, Shih-min
ContributorsMing-huei Yu, Wen-mei Yang, Wood-hi Cheng, Jao-hwa Kuang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0809106-141520
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0022 seconds