La pyrrhotite est un minéral qui, lorsque présent dans les granulats du béton, peut causer d'importants problèmes dans les ouvrages au fil du temps. Lorsqu'elle est exposée à l'humidité et en milieu oxygéné, la pyrrhotite subit une réaction chimique d'oxydation qui entraîne la formation de composés expansifs qui font gonfler le béton et le fissurent. L'objectif principal de ce programme de doctorat est d'établir une méthodologie capable de reproduire les effets néfastes de cette réaction des sulfures de fer dans le béton et ce, dans des conditions de laboratoire contrôlés. Cette méthodologie vise à utiliser des granulats d'une taille comparable à celle que l'on trouve dans les éléments en béton affectés in situ. En outre, elle vise à garantir que la procédure d'essai puisse être exécutée dans un délai raisonnable (quelques mois). Pour atteindre cet objectif, cette recherche utilise des granulats provenant des régions de Trois-Rivières au Québec, Canada et du Connecticut, États-Unis. Ces granulats, caractérisés par des concentrations variables de soufre total (S[T indice]), servent de matériaux de référence porteurs de sulfures pour l'étude. Ils sont accompagnés dans cette étude de granulats de référence contenant de faibles teneurs en S[T indice]. La phase initiale de la thèse s'est concentrée sur la conception d'un traitement pour activer l'oxydation des sulfures de fer dans des conditions bien contrôlés en laboratoire. La réflexion s'est basée sur l'hypothèse que l'oxydation des ions fer (Fe²⁺) des sulfures présents dans les granulats puisse être facilitée de manière catalytique par la présence d'ions chlorures dans le système. S'appuyant sur des méthodologies de laboratoire établies pour évaluer la diffusion des ions chlorures dans le béton, ce segment du projet a consisté à concevoir et à fabriquer une nouvelle cellule électrochimique. L'objectif est d'imprégner complètement d'ions chlorures des éprouvettes de béton de 200 mm de longueur. À la suite de l'essai électrochimique, des signes d'endommagement tels que des traces d'oxydation, des éclatements (pop-outs) et des fissures superficielles ont permis de valider l'impact catalytique des ions chlorures sur le béton. En plus, différentes techniques telles que l'examen pétrographique et la microscopie électronique à balayage avec spectroscopie dispersive en énergie des rayons X (SEM + EDXA) ont confirmé la formation des produits de réaction secondaires issus de l'oxydation des sulfures de fer présents dans les granulats et de l'attaque sulfatique interne qui s'en suit. L'objectif était ensuite de définir une procédure avec des paramètres d'essais optimisés. Les résultats de ces travaux indiquent qu'un essai électrochimique de 35 jours – comprenant une phase d'imprégnation aux ions chlorures de 14 jours suivie d'une période de traitement des éprouvettes sous tension imposée de 21 jours est efficace. Cette durée d'essai engendre des dommages dans les conditions de laboratoire, ce qui permet de différencier les matériaux granulaires réactifs des granulats de référence pauvres en sulfures de fer. Grâce à l'examen de plaques de béton poli et à l'examen pétrographique, une description détaillée a été proposée sur les mécanismes de détérioration générés par l'activation de la réaction d'oxydation des sulfures de fer dans des éprouvettes de béton lors de l'essai électrochimique. Pour évaluer le potentiel de réactivité d'un granulat contenant des sulfures de fer, le module d'élasticité relatif (RMoE) est une mesure plus efficace. Cette valeur est obtenue en comparant le module d'éprouvettes de béton sain après une cure humide de 28 jours et celui d'éprouvettes « sœur » soumises à l'essai électrochimique susmentionné. En outre, et avec l'appui de la technique de cartographie chimique du micro XRF, l'initiation et la propagation de l'attaque sulfatique interne due à l'oxydation des sulfures de fer présents dans le gros granulat est également confirmée. Aussi, une comparaison avec le protocole proposé par Rodrigues et coll. (2016) a été effectuée sur cinq matériaux granulaires avec des teneurs en S[T indice] variées afin de vérifier l'efficacité de la méthode pour classer un matériau granulaire comme réactif ou non réactif. Une valeur seuil préliminaire pour le RMoE de 0,75 est ainsi proposée pour distinguer/détecter la réactivité des granulats contentant des sulfures de fer. / Pyrrhotite is a mineral that, when present in concrete aggregates, can cause significant structural problems over time. When exposed to moisture in an oxygenated environment, pyrrhotite undergoes a chemical oxidation reaction, leading to the formation of expansive compounds that swell and crack the concrete. The primary objective of this doctoral program is to establish a methodology capable of replicating the adverse effects of this reaction in concrete within a controlled laboratory environment. This methodology aims to use aggregates of a size comparable to that found in affected in-situ concrete elements. Additionally, it aims to ensure that the test procedure can be carried out within a practical timeframe (a few months). To achieve this goal, aggregates from the Trois-Rivières region of Quebec, Canada, and from Connecticut, United States, are used in this research. These aggregates, characterized by different concentrations of total sulfur (Tₛ), serve as sulfide-bearing reference materials for the study. They are accompanied in this study by reference aggregates containing low levels of Tₛ. The initial phase of the thesis focused on designing a treatment to activate the oxidation of iron sulfides in controlled laboratory conditions. A working hypothesis proposed that the oxidation of iron ions (Fe²⁺) could be catalytically facilitated by the presence of chloride ions in the system. Based on established laboratory methods for evaluating chloride ion diffusion in concrete, this segment of the project involved the design and implementation of a new electrochemical cell. The objective is to fully impregnate 200 mm long concrete specimens with chloride ions. After the electrochemical test, evidence of damage such as oxidation traces, pop-outs, and surface cracking validated the catalytic effect of chloride ions on concrete. Additionally, various techniques such as petrographic examination and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM + EDXA) confirmed the formation of secondary reaction products resulting from the oxidation of iron sulfides present in the aggregates and of the subsequent internal sulfate attack. The objective was then to define a procedure with optimized test parameters. The results of this work indicate that a 35-day electrochemical test - consisting of a 14-day chloride ion impregnation phase followed by a 21-day period of specimen treatment under impressed voltage - is effective. This test duration induces damage under laboratory conditions and allows differentiation between reactive aggregate materials and reference aggregates low in iron sulfides. Through examination of polished concrete slabs and petrographic examination, a detailed description of the deterioration mechanisms generated by the activation of the iron sulfide oxidation reaction in concrete specimens during electrochemical test was proposed. To assess the reactivity potential of a sulfide-bearing aggregate, the relative modulus of elasticity (RMoE) was found to be most efficient. This value is obtained by comparing the modulus of elasticity of sound concrete specimens after 28-day of wet curing and that of companion specimens subjected to the electrochemical test. Furthermore, the initiation of internal sulfate attack due to the oxidation of aggregates containing iron sulfides is also confirmed with the aid of the micro XRF chemical mapping technique. In addition, a comparison with the protocol proposed by Rodrigues et al. (2016) is carried out on five aggregate materials with different Tₛ contents to verify the effectiveness of the method for classifying aa aggregate material as reactive or non-reactive. A preliminary threshold value for RMoE of 0.75 is proposed to differentiate/detect the reactivity of aggregates containing iron sulfides.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/148949 |
Date | 05 September 2024 |
Creators | Castillo Araiza, Rodolfo |
Contributors | Fournier, Benoit, Duchesne, Josée |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxxii, 223 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.002 seconds