Return to search

Transition Metal-Mediated Syntheses of Yohimbane and Indolizidine Alkaloids / Übergangsmetall-vermittelte Synthesen von Yohimban- und Indolizidinalkaloiden

Polycyclic nitrogen containing heterocycles form the basic skeleton of numerous alkaloids and physiologically active drugs. Alloyohimbane was obtained from 3,4-dihydro-â-carboline using an iron-mediated [2+2+1] cycloaddition as the key-step. The bis-TMS-diyne was conveniently obtained by the C-alkylation of 3,4-dihydro-â-carboline followed by N-alkylation. Demetalation of the iron-complex followed by hydrogenation, E-ring expansion, and reduction provided alloyohimbane, a structurally and biologically interesting substance, via a linear eight-step sequence in 7% overall yield based on 3,4-dihydro-â-carboline. Another sequence provided (±)-alloyohimbane and (±)-3-epi-alloyohimbane in nine steps. The pyrrole unit occurs in a variety of naturally occurring compounds, pharmaceutical products and polymers. A novel two-step procedure for the synthesis of pyrroles by addition of a propargyl Grignard reagent to a Schiff base and subsequent silver(I)-promoted oxidative cyclization of the resulting homopropargylamine has been developed. The generality of this reaction was proven by the synthesis of a broad variety of substituted pyrroles using silver(I)-promoted cyclization. A three-step synthesis of (±)-harmicine, a natural product isolated from the Malaysian plant Kopsia griffithii having strong anti-leishmania activity, from 3,4-dihydro-â-carboline is achieved by addition of 3-trimethylsilylpropargyl Grignard reagent, Ag(I)-promoted oxidative cyclization to a pyrrole, and chemoselective hydrogenation of pyrrole ring. Total synthesis of anti-tumor active crispine A and biologically active 1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline have been achieved in three steps using silver(I)-promoted oxidative cyclization as key step.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1119360417222-39155
Date27 May 2005
CreatorsAgarwal, Sameer
ContributorsTechnische Universität Dresden, Mathematik und Naturwissenschaften, Chemie, Institut für Organische Chemie, Prof. Dr. Hans-Joachim Knölker, Prof. Dr. Hans-Joachim Knölker, Prof. Dr. Dieter Schinzer, Prof. Dr. Peter Metz
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0027 seconds