Rhodium-catalysed hydroacylation provides a highly atom economic synthesis of ketone products from the combination of aldehydes and multiple bond systems by C-H bond activation. This work evaluates the combination of intermolecular hydroacylation for the synthesis of classical heterocycle precursors and their dehydrative cyclisation to give rise to a range of substituted heterocyclic compounds. Chapter 1 outlines recent developments in the chemistry of hydroacylation. Particular attention is paid to the various chelation strategies employed in intermolecular hydroacylation. Chapter 2 discusses some relevant and recent developments in the field of pyridine and pyrrole synthesis. Having established that β-sulphur chelation controlled hydroacylation can be used to synthesise pyridines in Chapter 3; attention was turned to hydroacylation of propargyl amines in Chapter 4. The methodology was expanded to provide a synthesis of γ-amino enones. The hydroacylation reaction and cyclisation is combined in a procedure that utilises thermal Boc-deprotection and cyclisation to give a range of highly-substituted pyrroles. The regioselectivity of the hydroacylation of propargyl amines is investigated in Chapter 5 by application of statistical Design of Experiments methodology. Optimised conditions were identified with minor improvements in the selectivity of the reaction.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:580873 |
Date | January 2011 |
Creators | Ylioja, Paul M. |
Contributors | Willis, Michael; Howsham, Catherine |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:0bd31ddc-c13e-4502-b359-64495a297489 |
Page generated in 0.0015 seconds