Return to search

Developments in dynamic field gradient focusing : microfluidics and integration

Advances in modern science require the development of more robust and improved systems for electroseparations in chromatography. In response, the progress of a new analytical platform is discussed. DFGF (Dynamic Field Gradient Focusing) is a separation technique, first described in 1998, which exploits the differences in electrophoretic mobility and hydrodynamic area of analytes to result in separation. This is achieved by taking a channel and applying a hydrodynamic flow in one direction and a counteracting electric field gradient acting in the opposite direction, resulting in analytes reaching a focal point according to their electrophoretic mobility. Work through this project has seen innovations to improve existing DFGF devices, including the design and manufacture of a novel packing material, while developing the latest DFGF system. This incorporates a microfluidic separation channel, eliminating the need for packing material or monolith. The new microfluidic device also features whole-on-column UV detection. Improvements through the developments of this device are discussed, most notably the utilisation of a new rapid prototyping technique. Examples of applications undertaken with the new device are demonstrated including novel samples and integration with mass spectrometry and 2D-HPLC.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:564249
Date January 2012
CreatorsWray, Thomas
ContributorsMyers, Peter
PublisherUniversity of Liverpool
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://livrepository.liverpool.ac.uk/7973/

Page generated in 0.009 seconds