Return to search

Modèles de copules Archimédiennes pour données de Bernoulli corrélées

Cette thèse introduit et explore une nouvelle classe de modèles probabilistes pour des données de Bernoulli échangeables en forme de grappe. Dans ces modèles, la probabilité conditionnelle de succès est une fonction de la probabilité marginale de succès et d’un effet aléatoire positif spécifique à chaque grappe. La distribution de l’effet aléatoire contient un paramètre d’association qui est estimé pour donner une mesure de la force de la dépendance résiduelle ignorée par les marges. Nous montrons que la transformée de Laplace de l’effet aléatoire est liée au générateur des modèles de copules Archimédiennes, ce qui nous permet d’avoir un nouvel aperçu de ces modèles. L’approche que nous proposons offre de nombreux avantages. En effet, la famille de copules Archimédiennes fournit une large classe de modèles pour la sur-dispersion dans une expérience de Bernoulli. D’un point de vue statistique, la fonction de vraisemblance marginale pour les données de l’échantillon a une expression explicite, les méthodes du maximum de vraisemblance sont alors faciles à mettre en oeuvre. Nous avons considéré quatre applications de nos modèles. Premièrement, nous construisons un intervalle de confiance par vraisemblance profilée pour le coefficient de corrélation intra-grappe (ICC). La deuxième application concerne l’estimation de la taille d’une population en présence d’hétérogénéité observée et non observée (résiduelle) dans une expérience de capture-recapture. Le troisième problème traite de l’estimation dans de petites régions, et enfin le quatrième indépendant des trois premiers, analyse les caractéristiques socio-économiques des hommes qui ont une préférence à épouser des jeunes filles de moins de 18 ans. Dans la première application, nous considérons le cas le plus simple de nos modèles où aucune covariable n’est disponible puis proposons la méthode du maximum de vraisemblance pour l’estimation du coefficient de corrélation intra-grappe (ICC) à l’aide de plusieurs spécifications de copules Archimédiennes. La sélection d’un modèle particulier est effectuée en utilisant le critère d’information d’Akaike (AIC). La procédure comprend l’estimation du maximum de vraisemblance et la méthode du profil de vraisemblance (ou vraisemblance profilée). Nous avons fait des études de simulation pour mesurer la performance de la méthode d’intervalle par vraisemblance profilée sous nos modèles en termes de taux de couverture et de longueur d’intervalle de confiance, et la sensibilité de notre approche à la spécification d’un modèle de copule. La procédure que nous proposons a aussi été appliquée à des données réelles. Nous comparons notre méthode à celle proposée sous le modèle Béta-binomial, et la méthode d’intervalle de type Wald modifié proposée par Zou and Donner (2004). L’une des conclusions importantes de ces études est que l’intervalle de confiance par vraisemblance profilée obtenu sous nos modèles présente de belles propriétés en termes de taux couverture et de longueur d’intervalle de confiance, même lorsque le nombre de grappes est petit. La sélection de modèle est une étape importante : si le modèle est mal spécifié, alors cela pourrait conduire à des résultats erronés. La seconde application, une extension de la première pour accommoder des covariables au niveau des grappes, concerne la modélisation de l’hétérogéneité dans les probabilités de capture lors d’une expérience de capture-recapture dans une population fermée. Dans ce contexte, nos modèles sont utilisés pour modéliser l’hétérogéneité résiduelle qui n’est pas prise en compte par les covariables mesurées sur des unités capturées. Plusieurs modèles sont disponibles pour l’hétérogénéité non observée et la probabilité de capture marginale est modélisée en utilisant les fonctions de liens Logit et Log-Log complémentaire. Les paramètres sont estimés en utilisant la vraisemblance conditionnelle construite à partir des observations collectées sur les unités capturées au moins une fois. Ceci généralise le modèle de Huggins (1991) qui ne tient pas compte de l’hétérogénéité résiduelle. La sensibilité de l’inférence à la spécification d’un modèle est également étudiée par des simulations. Un exemple numérique est présenté. La troisième application traite de la prédiction dans de petites régions. Nous proposons des techniques de Bayes basées sur nos modèles pour estimer des proportions régionales. L’inférence Bayésienne que nous proposons consiste à trouver la distribution a posteriori de l’effet aléatoire et sa transformée de Laplace sachant les données et les paramètres du modèle. Cette transformée de Laplace est ensuite utilisée pour trouver des estimateurs de Bayes et leurs variances a posteriori pour les vraies proportions. Nous développons une étude de comparaison entre le meilleur prédicteur de Bayes (BP) et le meilleur prédicteur linéaire sans biais (BLUP). Nous avons également étudié l’efficacité du BP obtenu sous nos modèles relativement au BLUP. Les paramètres du modèle sont estimés en utilisant la méthode du maximum de vraisemblance. L’avantage de notre approche est que la fonction de vraisemblance et l’expression du meilleur prédicteur (BP) ont une forme explicite, ce qui facilite la mise en oeuvre de leur évaluation sur le plan numérique. Nous obtenons un prédicteur empirique de Bayes (EBP) en remplaçant les paramètres par leurs estimateurs dans l’expression du BP. Nous utilisons le critère d’information d’Akaike (AIC) pour la selection d’un modèle. Nous utilisons la méthode du jackknife pour estimer l’erreur quadratique moyenne des prédicteurs empiriques. Des résultats empiriques obtenus à partir de données simulées et réelles sont également présentés. Enfin, le quatrième problème traité dans cette thèse, qui est indépendant des trois premiers, concerne l’analyse des caractéristiques socio-économiques des hommes qui ont une préférence à épouser des jeunes filles de moins de 18 ans. Dans ce contexte, nous considérons les données de l’EDS 2006 du Niger et utilisons les copules Archimédiennes bidimentionelles pour modéliser l’association entre le niveau d’éducation (variable discrète) des hommes et leur revenu pré-marital (variable continue). Nous construisons la vraisemblance pour un échantillon issu de ce couple de variables aléatoires mixtes, et déduisons une estimation du paramètre de dépendance en utilisant une procédure semi-paramétrique où les marges sont estimées par leurs équivalents empiriques. Nous utilisons la méthode du jackknife pour estimer l’erreur type. Nous utilisons la méthode de Wald pour tester l’égalité entre l’association des caractéristiques socio-économiques des hommes qui épousent des jeunes filles mineures et celle des hommes qui se marient avec des femmes âgées. Les résultats du test contribuent à la validité de notre théorie selon laquelle les hommes qui épousent des jeunes filles de moins de 18 ans ont un niveau d’éducation et un revenu pré-marital faibles, lorsqu’on les compare aux hommes qui ne le font pas. / This thesis introduces and explores a new class of probability models for exchangeable clustered binary data. In these models, the conditional probability of success is characterized by a function of the marginal probability of success and a positive cluster-specific random effect. The marginal probabilities are modeled using the logit and complementary log-log link functions. The distribution of the random effect contains an association parameter that is estimated to give a measure of the strength of the within-cluster residual dependence that is not accounted for by the margins. We show that the random effect distributions can be related to exchangeable Archimedean copula models, thus giving new insights on such models. The copula approach offers many advantages. Indeed, the family of Archimedean copulas provides a large class of models for over-dispersion in a Bernoulli experiment. From a statistical perspective, the marginal likelihood function for the sample data has an explicit expression, the maximum likelihood methods are then easy to implement and computationally straightforward. Based on the proposed models, four applications are considered. First, we investigate the construction of profile likelihood confidence interval (PLCI) for the intra-cluster correlation coefficient (ICC). The second application is concerned with an heterogeneity in capture probabilities in a mark-recapture study for estimating the size of a closed population. The third contribution deals with the estimation in small areas, the fourth and final, independent of the other three, analyzes the socioeconomic characteristics of men who prefer to marry girls under 18 years old. In the first application, we consider a simple case, without covariates and construct maximum likelihood inference procedures for the intra-cluster correlation using several specifications of Archimedean copulas. The selection of a particular model is carried out using the Akaike information criterion (AIC). Profile likelihood confidence intervals for the ICC are constructed and their performance are assessed in a simulation experiment. The sensitivity of the inference to the specification of the copula family is also investigated through simulations. Numerical examples are presented. We compare our approach with that proposed under the Beta-binomial model and with the modified Wald interval method proposed by Zou and Donner (2004). One of the important findings of these studies is that the profile confidence interval obtained under our models presents nice properties, even when the number of clusters is small. Model selection is an important step: if the model is poorly specified, then this could lead to erroneous results. The second application, an extension of the first one to accommodate cluster level covariates, is concerned with an heterogeneity in capture probabilities in a capture-recapture study for estimating the size of a closed population. Unit level covariates are recorded on the units that are captured and copulas are used to model the residual heterogeneity that is not accounted for by covariates. Several models for the unobserved heterogeneity are available and the marginal capture probability is expressed using the Logit and the complementary Log-Log link functions. The parameters are estimated using a conditional likelihood constructed with the data obtained on the units caught at least once. The population size is estimated using a Horvitz-Thompson estimator constructed using the estimated probabilities that a unit is caught at least once. This generalizes the model of Huggins (1991) that does not account for a residual heterogeneity. The sensitivity of the inference to the specification of a model is also investigated through simulations. A numerical example is presented. The third application uses the models of the first two in order to estimate small area proportions. We apply Bayes techniques using a new class of probability models, to estimate small area proportions. The Bayesian inference under the proposed models consists in obtaining the posterior distribution of the random effect and its Laplace transform. This posterior Laplace transform is then used to find Bayes estimates of small area proportions. We develop a comparison between the Best Predictor (BP) and the Best Linear Unbiased Predictor (BLUP). The model parameters are estimated using the maximum likelihood (ML) method. Under the proposed model, the likelihood function and the best predictor (BP) of small area proportion have closed form expressions. Model parameters are replaced by their ML estimates in the BP to obtain the empirical best predictor (EBP). We use the Akaike information criterion (AIC) for selecting a particular model. We propose the jackknife method to estimate the mean square error of the empirical Bayes predictor. Empirical results obtained from simulated and real data are also presented. The fourth and last problem addressed in this thesis, independently of the others three, investigates socioeconomic characteristics of men who prefer to marry girls under 18 years. We consider the data from the 2006 DHS Niger and use a bivariate Archimedean copula to model the association between education level (discrete) of men and their pre-marital income (continuous). We present the likelihood function for a sample from this pair of mixed random variables, and derive an estimate of the dependence parameter using a semiparametric procedure where margins are estimated by their empirical equivalents. We use the jackknife method to estimate the standard error. We use a Wald-type procedure, to perform a parametric hypothesis test of equality between the association of the socio economic characteristics of men who marry underage girls and that of men who marry older women instead. These test results contribute to the validity of our theory that men who marry girls under 18 years old have a low level of education and income pre-marital, when compared to men who did not.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26528
Date23 April 2018
CreatorsTounkara, Fode
ContributorsRivest, Louis-Paul
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xix, 120 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0145 seconds