Return to search

Graviton scattering amplitudes and 'Pure Connection Formulation' of GR

We show how the recently introduced 'Pure Connection Formulation' of gravity provides a natural framework for approaching the problem of computing graviton scattering amplitudes. In particular, we show that the interaction vertices are greatly simplified in this formalism as compared to the Einstein-Hilbert perturbation theory. This, in turns, leads to very simple Feynman rules that we employ for the direct computations. Furthermore, this framework naturally extends to wider class of gravitational theories, which encompasses General Relativity as a special case. We compute all the possible tree-level graviton-graviton scattering amplitudes for a general theory from this class. In the GR case the results are in complete accordance with the known expressions in the literature. Moreover, for the general theory distinct from GR, we find new tree-level parity-violating amplitudes. The presence of this new amplitudes is a direct consequence of the fact that the general theory does not exhibit explicit parity invariance.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:580259
Date January 2013
CreatorsDelfino, Gianluca
PublisherUniversity of Nottingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://eprints.nottingham.ac.uk/13414/

Page generated in 0.0016 seconds