Return to search

Deeply Virtual Compton Scattering off an unpolarised hydrogen target at HERMES

Deeply Virtual Compton Scattering (DVCS) is the simplest interaction that allows access to Generalised Parton Distributions (GPDs), a theoretical framework describing nucleon structure. The strong interest in GPDs results from the fact that they can be used to determine the total angular momentum of quarks inside the nucleon and provide a 3-dimensional picture of nucleon structure. The measurement of the DVCS process is facilitated by the interference with a competing interaction known as the Bethe-Heitler process which has the same final state. DVCS information is obtained from the asymmetrical in distribution of the real photon around the azimuthal angle $\phi$ at HERMES. Beam charge and beam helicity asymmetries, extracted from DVCS events with an unpolarised hydrogen target recorded during the 2006-2007 and 1996-2007 data taking periods, are presented in this thesis. The asymmetry amplitudes are presented over the range of HERMES kinematic acceptance, with their dependence on kinematic variables t, xB and Q^2 also shown and compared to a phenomenological model.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:520387
Date January 2010
CreatorsBurns, Jonathan R. T.
PublisherUniversity of Glasgow
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://theses.gla.ac.uk/2057/

Page generated in 0.0013 seconds