Return to search

Palladium-catalysed synthesis of highly functionalised compounds

Palladium-catalysis is extremely important in fine chemical synthesis. This thesis looks at the development of new palladium-catalysed carbon–carbon bond formation reactions, with particular attention to forming new bonds to sp3 carbons. The opening chapter of this thesis gives an overview of current methods for palladium-catalysed heterocyclisation, and the methods for incorporating further functionalisation into this process, then focuses on the optimisation and expansion of a new palladium-catalysed carboallylation reaction. The reaction mechanism was demonstrated via a deuterium-labelling study, confirming that the reaction proceeds through an isohypsic mechanism. Chapter 2 begins with a summary of palladium-catalysed isohypsic reactions, and the introduction of the isohypsic–redox sequence. New results are presented on the expansion of this isohypsic–redox sequence to include the oxyallylation–Heck-coupling, and work on the aminoallylation–Grubbs–Wacker oxidation. Chapter 3 commences with an introduction to MIDA boronates, describing their useful properties along with some uses, particularly in step-wise synthesis. The development of a new palladium-catalysed allylation of MIDA boronates is then detailed. Using MIDA boronates to form a new bond to an sp3 carbon for the first time, this was applicable to a range of allyl halides as well as a large number of MIDA boronates containing a range of functionality. Formation of a new sp3–sp3 carbon–carbon bond was explored, as well as an enantioselective allylation. The application of the allylation was demonstrated in the development of a new palladium-catalysed synthesis of Ibuprofen. Experimental procedures and data are summarised in Chapter 4. An appendix containing NMR spectra for new compounds is attached.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:744116
Date January 2018
CreatorsPhillips, David J.
PublisherUniversity of Glasgow
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://theses.gla.ac.uk/9011/

Page generated in 0.0077 seconds