Return to search

Lead Determination By Flame Atomic Absorption Spectrometry Using A Slotted Quartz Tube Atom Trap And Metal Coatings

Flame Atomic Absorption Spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity / because it is a simple and economical technique for determination of metals. In recent years atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of mg/L, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of these atom traps, it is applied for determination of volatile elements / it is economical, commercially available and easy to use. In this study, a sensitive analytical method has been developed for the determination of lead with the help of SQT. Regarding the angle between the two slots of SQT, 120&deg / and 180&deg / configurations were used and the results were compared. There were three modes of SQT used. The first application was for providing longer residence time of analyte atoms in the measurement zone / 3 fold sensitivity enhancement was observed. The second mode was the usage of SQT for preconcentration of lead atoms. In the presence of a lean air-acetylene flame, analyte atoms were trapped in the inner surface of SQT for a few minutes. Then, by the help of a small volume (10-50 &amp / #956 / L) of Methyl isobutyl ketone (MIBK), analyte atoms were revolatilized and a rapid atomization took place. Using this mode, a sensitivity enhancement of 574 was obtained at a rather low (3.9 mL/min) suction rate / 1320 fold
improvement was reached at higher sample suction rate (7.4 mL/min) for 5.0 min collection. The last mode involves coating of the inner surface of SQT with several kinds of transition metals. The best sensitivity enhancement, 1650 fold, was obtained by the Ta coated SQT. In addition, effects of some elements and anions on Pb signal in Tacoated-SQT-AT-FAAS were examined. Final step consists of surface analysis / chemical nature of Pb trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12610794/index.pdf
Date01 July 2009
CreatorsDemirtas, Ilknur
ContributorsAtaman, Yavuz Osman
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsAccess forbidden for 1 year

Page generated in 0.0026 seconds