Return to search

Crystal structure determination and prediction of simple organic molecules, using powder diffraction methods, and modern computational techniques

The research presented within this thesis highlights aspects of crystal structure determination from the combined use of powder X-ray, synchrotron and neutron diffraction and also computational crystal structure prediction from molecular structure only. The use of DE enabled the crystal structure of 2,4-dichloro-5-sulfamoylbenzoic acid and oxamic acid to be examined from conventional laboratory X-ray diffraction. In the case of 2,4-dichloro-5-sulfamoylbenzoic acid two comparable structures were identified each of which refined to similar extents. To correctly identify the correct crystal structure it was necessary to obtain and refine a powder neutron dataset. This presented before obscured information on the relative positions of hydrogen atoms and inevitably led to the successful elucidation of the crystal structure of 2,4-dichloro- 5-sulfamoylbenzoic acid. With reference to oxamic acid two conformations, namely 'cis' and 'trans' were identified from the refinement of laboratory X-ray diffraction. Infrared analysis and lattice energy calculations were also used to distinguish between the two conformations with some success. With respect to computational crystal structure prediction, presented here is a new computational strategy for crystal structure prediction from molecular structure only. The traditional lattice energy output from a polymorph prediction sequence is reranked in terms of hydrogen bonding and graph set merit points. My research here has to a certain extent managed to combine these attributes and enabled the successful prediction of 8 out of the initial 11 chosen test structures obtained from the Cambridge Structural Database (CSD).

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:761251
Date January 2006
CreatorsChana, Harcharn S.
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/8849/

Page generated in 0.0014 seconds