Return to search

The contribution of mineralising phytoplankton to the biological carbon pump in high latitudes

The biological carbon pump (BCP) exports 5 - 12 Gt C yr−1 to the deep sea and is important for the distribution of carbon within the ocean. Previous studies proposed that the phytoplankton community structure and availability of dense biominerals are key in defining regional export. This thesis examines these factors and their influence on export in the Southern Ocean and the Arctic through the examination of upper ocean species composition, distribution and marine snow particles. In the Southern Ocean, the samples were collected from the high reflectance feature known as the Great Calcite Belt (GCB). The marine snow catcher was used to capture sinking particles and allowed the examination of both the large, fast sinking particles and the slow sinking fraction of particulate organic carbon (POC). The GCB was dominated by nanophytoplankton (<20μm), where the coccolithophore Emiliania huxleyi and diatoms Fragilariopsis nana, Fragilariopsis pseudonana and Pseudonitzschia sp. were the dominant species driving the variation in biogeography. The variation in biogeography was best described by a combination of temperature, nutrients and pCO2. E. huxleyi forms distinct features in the GCB on the Patagonian Shelf, near South Georgia and the Crozet Islands. A southwards progression of E. huxleyi occurs within High Nutrient Low Silica Low Chlorophyll waters in post-bloom conditions after silicic acid and iron drawdown by diatoms. When examined in terms of biomass, the diatoms dominate the GCB, although E. huxleyi was the single biggest contributor as a species. A statistical comparison of surface species and slow sinking material indicated that there was a degree of similarity between the surface and exported community but was regionally variable. Coccolithophores and diatoms contributed minimally (<10%) to upper ocean biomass and total carbon export. The results of this thesis indicate that even though the coccolithophores and diatoms are important phytoplankton for primary production, their direct contribution as cells to carbon export is low. POC flux correlated with opal flux but not calcite flux indicating that the opal was more important in driving POC flux in the GCB. Two types of sinking particles were examined, marine snow aggregates and faecal pellets and there was no significant difference between the sinking velocities. Marine snow sinking velocity was not dependent on size of the aggregate. The concentrations of biominerals and POC in the surface waters and the biominerals in the sinking particles did not influence the sinking velocity. This indicates that porosity and POC content could be more important in determining the sinking velocity and the carbon flux. The synthesis includes the species composition and biomass of the Arctic, which displayed similar trends to the GCB. The results from this thesis suggest that the slow sinking carbon export may not be significantly affected by potential changes in upper ocean biomineralising phytoplankton community structure and upper ocean chemistry. The effects of porosity and POC contents of the particles are here considered to be just as important for determining the export flux than upper ocean community structure and biomineral ballast availability. This implies that the impacts of ocean acidification will become more important deeper in the water column as biominerals become more important within sinking particles as POC is removed.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:640766
Date January 2014
CreatorsSmith, Helen E. K.
ContributorsPoulton, Alex
PublisherUniversity of Southampton
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://eprints.soton.ac.uk/376448/

Page generated in 0.002 seconds