Return to search

Cognitive and locomotor strategies of arboreal locomotion in non-human apes and humans

Arboreal travel for large apes is energetically demanding and risky due to the complexity of the forest canopy. Careful selection of supports is therefore essential for safe and efficient locomotion. This thesis investigates the factors involved in route and support selection in bonobos (Pan paniscus) and in modern human (Homo sapiens) tree climbers. Naturalistically housed bonobos were given a choice of two ropes, one that provided easy access and another that required more demanding postures, with which to access a hard-to-reach food goal. The bonobos selected a rope based on its distance from the goal and its flexibility. Decision making in human tree climbers was investigated using a novel combination of qualitative (participant interviews) and quantitative (observations of behaviour) data. Participants were asked to collect goals from within a tree crown three times each. Interviews revealed that participants either considered risk avoidance or ease/efficiency as the main factor influencing their decisions whilst climbing. Those considering risk took longer to complete each climb, but became quicker after their first climb. These studies demonstrate that the demands of the arboreal environment require knowledge of the functional properties of supports and that memory of specific routes may increase the efficiency of arboreal locomotion.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:699173
Date January 2016
CreatorsHanson, Nardie Kathleen Igraine
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/7122/

Page generated in 0.0016 seconds