Iron containing metalloenzymes are an extremely important class of biocatalysts conserved throughout evolution because of their vital role in the biochemistry of life. Here we discuss a specific class of these enzymes that use molecular oxygen binding to enable there activity. We also attempt to describe synthetic analogues whose chemistry is based on that seen in those natural systems. This dissertation will highlight how computational research can illuminate specific aspects of the reaction mechanisms that these systems catalyse, which in many cases are unable to be understood purely experimentally. We report on two combined QM/MM and density functional theory (DFT) projects, which describe the AlkB demethylation enzyme and the SyrB2 halogenase; both highlight the strengths and weaknesses of each method. Our DFT work on an i-propyl-bis(imino)pyridine, an equatorial tridentate ligand, developed by one of the papers’ co-authors (Badiei, Siegler et al. 2011) exampifies superoxo chemistry based on the dioxygenases. Our other projects focus on monooxygenase catalysed chemistry one based on the biomimic [FeIV(O)(TPA)Cl]+ reports on a halogenase mimic that shows exciting chemoselectivity in halogenation vs. hydroxylation. I also report on publications examining two other biomimetic ligands. A imido-bridged diiron-oxo phtalocyanine complex capable of hydroxylating methane and a nonheme iron system which gives us a good deal of insight into the effects of secondary coordination sphere chemistry [FeII(N4Py2Ph)(NCCH3)](BF4)2. My computational studies have given insight into the chemical properties of metal-oxo oxidants and their reactivity patterns with substrate and have been utilized to explain experimentally observed data.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:603186 |
Date | January 2014 |
Creators | Quesne, Matthew |
Contributors | De Visser, Samuel |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/computational-studies-of-naturally-occurring-transition-metal-dependent-oxygen-activating-enzymes-and-their-synthetic-analogues(49d652fe-9ce9-491a-abf4-76feafdb7a68).html |
Page generated in 0.0057 seconds