Return to search

Quantum transport and phase transitions in lattices subjected to external gauge fields

The first and main part of this thesis concerns the quantization of the transverse transport in diverse periodic quantum systems. From a theoretical point of view, the Hall conductivity's quantization may be understood at the single-particle level in terms of topological invariants. In periodic media such as crystals, the single-particle energy spectrum depicts a specific band structure. A modern approach, based on topology and differential geometry, consists in assigning an abstract mathematical object, a fibre bundle, to each energy band. The fibre bundle's topology is measured by a topological invariant, called the Chern number, which only takes integral values. Surprisingly, the transverse conductivity can be expressed as a sum of Chern numbers. In this work, one provides a rigorous derivation of this fact and one presents several methods which allow the numerical and analytical computation of the Chern numbers for diverse systems.
The first original study concerns the physics of ultracold atoms trapped in optical lattices. These very popular experimental setups, which are currently designed in several laboratories worldwide, allow for the exploration of fundamental problems encountered in modern physics. In particular atoms trapped in optical lattices reproduce with a very high accuracy the physics of the Hubbard-type models which describe a huge variety of condensed
matter phenomena, such as high-Tc superconductivity and the Mott quantum phase transition. Particularly interesting is the possibility to create artificial magnetic fields in optical lattices. Generated by complex laser configurations or by rotation of the trap, these artificial fields allow the simulation of electronic systems subjected to intense magnetic fields. In this thesis, one explores the possibility of a quantum Hall-like effect for neutral particles in such arrangements. In particular one focuses on the exotic situation in which non-Abelian gauge potentials are generated in the system. In these interesting arrangements, the atomic hoppings are assisted by external lasers and are described by non-commutating translation operators. The non-Abelian fields which are generated in these systems are well known in high-energy physics, where they play a key role in modern theories of fundamental interactions.
Thereafter, our study of the IQHE in periodic systems concerns quantum graphs. These models which describe the propagation of a quantum wave within an arbitrary complex object are extremely versatile and hence allow the study of various interesting quantum phenomena. Quantum graphs appear in diverse fields such as solid state physics, quantum chemistry, quantum chaology and wave physics. On the other hand, in the context of quantum chaology, graphs have been the vehicle to confirm important conjectures about chaos signatures. In this thesis, one studies the spectral and chaological properties of infinite rectangular quantum graphs in the presence of a magnetic field. One then establishes the quantization of the Hall transverse conductivity for these systems.
The second part of the thesis is devoted to the physics of interacting atoms trapped in optical lattices and subjected to artificial gauge potentials. One explores the Mott quantum phase transition in both bosonic and fermionic optical lattices subjected to such fields. The optical lattices are described through the Hubbard model in which the dynamics is ruled by two competing parameters: the interaction strength U and the tunneling amplitude t. The Mott phase is characterized by a commensurate filling of the lattice and is reached by increasing the ration U/t, which can be easily achieved experimentally by varying the depth of the optical potential. In this thesis one studies how this quantum phase transition is modified when the optical lattice is subjected to diverse artificial gauge potentials.
Moreover, one shows that vortices are created in bosonic optical lattices in the vicinity of the Mott regime. The vortices are topological defects in the macroscopic wave function that describes the superfluid. One comments on the vortex patterns that are observed for several configurations of the gauge potential.
%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%
La physique statistique quantique prédit l’émergence de propriétés remarquables lorsque la matière est soumise à des conditions extrêmes de basses températures. Aujourd’hui ces nouvelles phases de la matière jouent un rôle fondamental pour les technologies actuelles et ainsi méritent d’être étudiées sur le plan théorique.
Dans le cadre de ma thèse, j’ai étudié l’effet Hall quantique qui se manifeste dans des systèmes bidimensionnels ultra froids et soumis à des champs magnétiques intenses. Cet effet remarquable se manifeste par la quantification parfaite d’un coefficient de transport appelé conductivité de Hall. Cette grandeur physique évolue alors sur divers plateaux qui correspondent à des valeurs entières d’une constante fondamentale de la nature. D’un point de vue théorique, cette quantification peut être approchée par la théorie des espaces fibrés qui permet d’exprimer la conductivité de Hall en termes d’invariants topologiques.
Nous explorons l'effet Hall quantique pour différents systèmes en nous appuyant sur l’interprétation topologique de la quantification de la conductivité de Hall. Nous démontrons ainsi que l’effet Hall quantique se manifeste aussi bien dans les métaux que dans les graphes quantiques et les réseaux optiques. Les graphes quantiques sont des modèles permettant l’étude du transport dans des circuits fins, alors que les réseaux optiques sont des dispositifs actuellement réalisés en laboratoire qui piègent des atomes froids de façon périodique. Considérant différents champs magnétiques externes et variant la géométrie des systèmes, nous montrons que cet effet subit des modifications remarquables. Notamment, l’effet Hall quantique est représenté par des diagrammes des phases impressionnants : les multiples phases correspondant à la valeur entière de la conductivité de Hall se répartissent alors dans des structures fractales. De plus, ces diagrammes des phases se révèlent caractéristiques des différents systèmes étudiés.
D’autre part, nous étudions la transition quantique de Mott dans les réseaux optiques. En augmentant l’interaction entre les particules, le système devient isolant et se caractérise par le remplissage homogène du réseau. Nous étudions également l’apparition de tourbillons quantiques lorsque le système est soumis à un champ magnétique au voisinage de la phase isolante.

Identiferoai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-04012009-152422
Date11 May 2009
CreatorsGoldman, Nathan
ContributorsTytgat, Michel, Lewenstein, Maciej, Nardone, Pasquale, Brenig, Léon, Barnich, Glenn, Gaspard, Pierre
PublisherUniversite Libre de Bruxelles
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04012009-152422/
Rightsunrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.003 seconds