Return to search

Mineral precipitates in eclogites from Donghai in the Sulu ultrahigh-pressure province, eastern China

This research studies 6 eclogites from Qinglongshan Donghai in the Sulu ultrahigh-pressure (UHP) province, eastern China. Petrographic microscope, Ramam spectrometer, scanning electron microscope (SEM) and transmission electron microscope (TEM) are utilized to identify mineral compositions, microstructures and mineral precipitates. Optical observations show the eclogites with the following mineral assemblage: garnet + omphacite + amphibole + epidote + rutile ¡Ó quartz ¡Ó phengite ¡Ó kyanite ¡Ó coesite pseudomorph ¡Ó apatite ¡Ó talc. Oriented mineral precipitates are found within omphacite and within apatites.
The parallel precipitates in omphacite are quartz rods confirmed by electron probe microanalysis (EPMA) and TEM diffraction patterns. The direction of the long axes of the quartz rods seem to have relation with the cleavage and with the parting of omphacite. The direction of the long axis of quartz is not necessarily the c axis direction of quartz. Pargasite is intergrown with quartz and the amounts of both minerals seem to have a positive relation. Pargasite contain element K which is not found in omphacite and there is no obvious crystallographic relation between quartz, pargasite, and omphacite.
There is amphibole exsolved from the omphacite and the crystallographic axes of tht exsolved amphibole parallel to those of omphacite. The a and c parameters for the two phases are equal while the b parameter of the amphibole is almost twice that of omphacite.
A two-stage growth mechanism for quartz and amphibole intergrown within omphacite is proposed: (1) very fine quartz rods exsolved (or aided with infilling fluids) from a supersilicic clinopyroxene during decompression, creating grain boundaries between quartz rods and host, (2) growth of amphibole and quartz along the grain boundaries with fluid participation and an expense of omphacite during retrograde metamorphism.
There are two different precipitates within apatites in different eclogites. One of the precipitates is calcium sulfate (anhydrite or gypsum) and the other is ferrous sulfide (pyrrhotite?). There was no report about calcium sulfate within apatite in UHP rocks before. The formation of sulfide (reduced) or sulfate (oxidized) is controlled by the fugacity of oxygen. According to the previous reports and the discoveries of this research, there are many different kinds of precipitates containing silicate incompatible elements in apatites. It can¡¦t be ruled out that the precipitates exsolved from apapites but apatites are more likely to act as sinks of silicate incompatible elements and different minerals precipitated within apatites under different redox conditions rather than exsolution processes.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0116106-200130
Date16 January 2006
CreatorsTsai, Hsien-chang
ContributorsChin-Ho Tsai, Huai-Ren Yang, Wei-Teh Jiang, Yen-Hong Shau
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0116106-200130
Rightswithheld, Copyright information available at source archive

Page generated in 0.0019 seconds