Return to search

Growth and characterization of InAs quantum dots prepared by low-pressure metal-organic vapor phase epitaxy using N2 as carrier gas.

Wang Hui. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 78-84). / Abstracts in English and Chinese. / ABSTRACT (ENGLISH) --- p.i / ABSTRACT (CHINESE) --- p.iii / ACKNOWLEDGEMENTS --- p.iv / CONTENTS --- p.v / Chapter CHAPTER 1: --- INTRODUCTION --- p.1 / Chapter 1.1 --- Motivation behind This Study --- p.1 / Chapter 1.2 --- Concept of Quantum Dots --- p.2 / Chapter 1.2.1 --- Introduction to Semiconductors / Chapter 1.2.2 --- From Bulk Semiconductor to Quantum Dots / Chapter 1.3 --- Device Applications of Quantum Dots --- p.10 / Chapter 1.3.1 --- Laser Diodes / Chapter 1.3.2 --- Infrared Photodetectors / Chapter CHAPTER 2: --- METAL-ORGANIC VAPOR PHASE EPITAXY --- p.14 / Chapter 2.1 --- Introduction in Epitaxial Growth --- p.14 / Chapter 2.1.1 --- What's Epitaxy / Chapter 2.1.2 --- Heteroepitaxy Techniques / Chapter 2.2 --- MOVPE Growth System and Principles --- p.15 / Chapter 2.2.1 --- What's MOVPE / Chapter 2.2.2 --- MOVPE Chemistry and Basic Concepts / Chapter 2.2.3 --- Growth Regimes in MOVPE Process / Chapter CHAPTER 3: --- SELF-ASSEMBLED QUANTUM DOT GROWTH THEORY --- p.23 / Chapter 3.1 --- Strained Layer Heteroepitaxy --- p.23 / Chapter 3.2 --- Epitaxial Growth Modes --- p.24 / Chapter 3.2.1 --- Introduction / Chapter 3.2.2 --- Frank-van-der-Merve Mode / Chapter 3.2.3 --- Stranski-Krastanow Mode / Chapter 3.2.4 --- Volmer-Weber Mode / Chapter 3.3 --- Self-assembly of Quantum Dots --- p.30 / Chapter 3.4 --- Current Issues and Problems --- p.30 / Chapter CHAPTER 4: --- EXPERIMENTAL METHODS --- p.34 / Chapter 4.1 --- Equipment --- p.34 / Chapter 4.2 --- Preparation of Sample --- p.34 / Chapter 4.3 --- Growth Rate and Composition Determination --- p.35 / Chapter 4.4 --- Characterization Techniques --- p.40 / Chapter 4.4.1 --- Atomic Force Microscopy (AFM) / Chapter 4.4.2 --- Photoluminescence (PL) / Chapter 4.4.3 --- Other Techniques / Chapter CHAPTER 5: --- RESULTS AND DISCUSSION --- p.44 / Chapter 5.1 --- Introduction --- p.44 / Chapter 5.2 --- Formation Trends of In As QDs --- p.45 / Chapter 5.2.1 --- Experimental Procedures / Chapter 5.2.2 --- Results and Discussion / Chapter 5.2.2.1 --- Effect of Growth Temperature / Chapter 5.2.2.2 --- Effect of Growth Rate / Chapter 5.2.2.3 --- Effect of In As Coverage / Chapter 5.2.2.4 --- Effect of Buffer Layer Material / Chapter 5.2.3 --- Summary / Chapter 5.3 --- Annealing of InAs QDs under Dissimilar Ambient Flux --- p.65 / Chapter 5.3.1 --- Experimental Procedures / Chapter 5.3.2 --- Results and Discussion / Chapter 5.3.3 --- Summary / Chapter CHAPTER 6: --- CONCLUSIONS --- p.75 / Chapter 6.1 --- Summary --- p.75 / Chapter 6.2 --- Future Work --- p.77 / BIBLIOGRAPHY --- p.78 / PUBLICATION LIST --- p.84 / APPENDIX: Abbreviations --- p.85

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324918
Date January 2004
ContributorsWang, Hui, Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, vi, 86 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0017 seconds