Owing to its extraordinary electrical, optical, and mechanical properties, graphene has emerged as a promising material for a variety of applications in the future. However, not all these applications will be able to employ or require pristine graphene; hence several alternative methods have developed for the mass production of graphene and related materials. Graphene oxide (GO), a material closely related to graphene, allows engineering of its chemical composition by means of chemical, thermal, and electrochemical methods. This provides an opportunity to tune physical and chemical properties of graphene. This work reports on investigations of the structure of chemically modified graphenes (CMGs) derived from GO, interactions of metals and organic thin films with CMG, and application of metal-CMG as a hydrogen gas sensor. GO was fabricated by a modified Hummers method. GO, being insulating, was reduced by hydrazine and thermal annealing to produce reduced graphene oxide (rGO). The CMG sheets were deposited on TEM grids and on Si/SiO2 substrates for characterization by atomic force microscopy, transmission electron microscopy (TEM), xray photoelectron spectroscopy, and Raman spectroscopy. The structural analysis of GO performed by TEM revealed that in GO, on average, the underlying carbon lattice maintains the symmetry and lattice-spacings of graphene. Compositional analysis disclosed that the as-produced GO is actually made of oxidized graphene like sheets strongly attached with oxidative debris that make the as produced GO hydrophilic and insulating. In the TEM, both GO and reduced GO (rGO) were nearly transparent and stable under the electron beam and hence they made excellent supports to study the growth of thin organic and metal films deposited by physical vapour deposition. The study revealed the interactions of organic molecules, fluorinated copper phthalocyanine, with CMG and packing of the molecules in the crystal structure. Film-thicknesses from sub-monolayer to tens of monolayers were analysed. In the study of metal thin film growth, the factors determining the growth and morphology of different metals-on-CMG were studied. Fine control over the size and coverage of nanoparticles were achieved. This control was used to combine Pd nanoparticles and rGO to design selective, highly sensitive, and practical hydrogen gas sensor.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:575006 |
Date | January 2012 |
Creators | Pandey, Priyanka A. |
Publisher | University of Warwick |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://wrap.warwick.ac.uk/55111/ |
Page generated in 0.0015 seconds