Return to search

Amino-containing polymers for catalysis using RAFT polymerization

Chapter 1 is a general introduction of the whole thesis and it features the main concepts of this project. Chapter 2 reports the synthesis and self- assembly of a temperature-responsive DMAP containing nanoreactor. The DMAP motif is incorporated in to a monomer and polymerized by RAFT with styrene in order to form the hydrophobic block of a polymeric micelle. The shell of the micelle is formed by chain extension of the styrenic block with NIPAM, which provides temperature responsive properties to the system. In Chapter 3, the concept of using polymeric micelles to catalyze organic reactions in water is presented and compared to surfactant based micelles in the context of molecular recognition, achieving enzyme-like specific catalysis by tethering the catalyst in the well-defined hydrophobic core of a polymeric micelle In Chapter 4, the incorporation of different catalytic amino motifs into a polymer backbone is investigated by RAFT polymerization in order to catalyze the reaction between polyalcohols and polyisocyanates in the formation of polyurethane foams. In the final chapter, the stimuli-responsive properties of DMAEA containing polymers are investigated. DMAEA is copolymerized by RAFT with the non-responsive MA at different loadings in order to study how the distance between amine motifs affects the polymer LCST and pKas .values

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:582249
Date January 2012
CreatorsCotanda Santapau, Maria José
PublisherUniversity of Warwick
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://wrap.warwick.ac.uk/56272/

Page generated in 0.0015 seconds