The use of agricultural chemicals, such as nitrogen fertilizers in corn production, often results in water pollution. This research, comprising three parts, was designed to investigate the effects of nitrogen fertilizer application rates, water table management, and corn cropping systems on drainage water quality. The first part was a field study, to investigate the impact of two cropping systems and water table management on nitrate loss through tile drainage. The considered water table treatments were free drainage, and subirrigation with target water table depths at 0.5 m or 0.75 M below the soil surface. Corn (Zea mays L.) monoculture and corn intercropped with annual ryegrass (Lolium multiflorum Lam.) were investigated. The highest annual tile drainage losses of 21.9 kg N/ha were measured in monocropped, freely draining plots. Subirrigation with a water table depth of 0.5 m reduced tile drainage loss of N by over 70%, and intercropping corn with ryegrass under free drainage reduced leaching losses by 50%. / The second part of the research was a simulation study with the water quality model, DRAINMOD-N. The water quality impact of fertilizer application rate under free drainage, subirrigation and controlled drainage was evaluated. Leaching losses, denitrification and N accumulation in the soil profile were investigated. Using data obtained from the field experiment, the performance of DRAINMOD-N was evaluated. DRAINMOD-N assumes that denitrification follows first order kinetics, contrary to field measurements which showed little correlation between denitrification rate and NO$ sb3 sp-$-N concentration. Therefore, DRAINMOD-N was modified by replacing the original denitrification function with the Michaelis-Menten relationship. In so doing, denitrification is expressed as a first order process when NO$ sb3 sp-$-N concentration limits denitrification, and as a zero order process for non-limiting NO$ sb3 sp-$-N concentration. / For denitrification to be a decision making criterion of water table management, inexpensive but reliable measurement techniques are required. Thus, the purpose of the final part of this research was to formulate a technique for measuring real-time denitrification rate. Denitrification rate could be expressed as a function of soil redox potential (Eh) and temperature. Laboratory and field studies showed that factors such as soil nitrate and organic carbon had negligible effect on denitrification rate. Therefore, it can be concluded that for most agricultural soil, Eh and soil temperature will satisfactorily describe denitrification variation.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.40155 |
Date | January 1996 |
Creators | Kaluli, J. Wambua |
Contributors | Madramootoo, Chaudra A. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Agricultural and Biosystems Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001505775, proquestno: NN12397, Theses scanned by UMI/ProQuest. |
Page generated in 0.0138 seconds