Os modelos multiníveis são uma classe de modelos úteis na análise de bases de dados com estrutura hierárquica. No presente trabalho propõem-se os modelos multiníveis com resposta Weibull, nos quais são considerados interceptos aleatórios na modelagem dos dois parâmetros da distribuição da variável resposta. Os modelos aqui propostos são flexíveis devido a que a distribuição dos interceptos aleatórios pode der escolhida entre uma das seguintes quatro distribuições: normal, log--gama, logística e Cauchy. Uma extensão dos modelos é apresentada na qual é possível incluir na parte sistemática dos dois parâmetros da distribuição da variável resposta interceptos e inclinações aleatórias com distribuição normal bivariada. A estimação dos parâmetros é realizada pelo método de máxima verossimilhança usando a quadratura de Gauss--Hermite para aproximar a função de verossimilhança. Um pacote em linguagem R foi desenvolvido especialmente para a estimação dos parâmetros, predição dos efeitos aleatórios e para a obtenção dos resíduos nos modelos propostos. Adicionalmente, por meio de um estudo de simulação foi avaliado o impacto nas estimativas dos parâmetros do modelo ao assumir incorretamente a distribuição dos interceptos aleatórios. / Multilevel models are a class of models useful in the analysis of datasets with hierarchical structure. In the present work we propose multilevel Weibull models in which random intercepts are considered to model the two parameters of the Weibull distribution. The proposed models are flexible due to random intercepts distribution can be chosen from one of the four following distributions: normal, log-gamma, logistics and Cauchy. An extension of the models is presented in which we can include, in the systematic part of the two parameters of the distribution, random intercepts and slopes with a bivariate normal distribution. The parameter estimation is performed by maximum likelihood method using the Gauss Hermite quadrature to approximate the likelihood function. A package in R language was especially developed to obtain parameter estimation, random effects predictions and residuals for the proposed models. Additionally, through a simulation study we investigated the misspecification random effect distribution on estimated parameter for the proposed model
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07052013-203915 |
Date | 28 February 2013 |
Creators | Freddy Hernandez Barajas |
Contributors | Viviana Giampaoli, Mário de Castro Andrade Filho, Audrey Helen Mariz de Aquino Cysneiros, Gisela Tunes da Silva, Michelli Karinne Barros da Silva |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds