É possível desenvolver representações reais em linguagem matemática, tornando-se uma ferramenta eficiente no desenvolvimento e validação de novas tecnologias na agricultura. No manejo da lavoura de aveia, o uso de fungicida tem sido prática decisiva, pois, a resistência genética às principais doenças foliares não é eficiente. Portanto, o uso indiscriminado de fungicida, principalmente próximo a colheita de grãos, requer atenção especial, devido o cereal ser consumido na maioria dos alimentos em seu estado in natura. Poucos modelos matemáticos na cultura da aveia que tratem de avanços em buscar descrever o comportamento e a estimativa da produtividade sobre o manejo de fungicida tem sido encontrado. O objetivo do estudo é o desenvolvimento de modelos matemáticos que permitam caracterizar e identificar cultivares de aveia ecologicamente mais eficientes à redução de uso de fungicida e de simulações de produtividade pelas condições climatológicas e de manejo de uso de fungicida pelo número de aplicações com maior intervalo entre a colheita e última aplicação. O estudo foi realizado no Instituto Regional de Desenvolvimento Rural (IRDeR/UNIJUI) em Augusto Pestana (RS), em delineamento de blocos casualizados com três repetições, em um fatorial 22x4, para 22 cultivares de aveia recomendadas para cultivo no Brasil e 4 condições de uso de fungicida, sem fungicida, com uma aplicação aos 60 dias após a emergência (DAE), com duas aplicações 60/75DAE, com três aplicações 60/75/90 DAE, respectivamente. O uso de regressões lineares incluindo a média mais um desvio padrão sobre os coeficientes linear e angular da equação permitem identificar cultivares ecologicamente mais eficientes à redução e maior intervalo de uso de fungicida entre a colheita e última aplicação. O modelo de Eberhart e Russel foi importante na identificação de cultivares mais ajustadas à redução ao uso de fungicida pelos parâmetros de adaptabilidade. Além disso, com cultivares ecologicamente mais estáveis ás condições climáticas pelo uso do parâmetro que indica estabilidade a partir dos desvios da regressão. Na análise conjunta envolvendo o efeito cumulativo de diferentes safras agrícolas, o uso de análise multivariada representa técnica eficiente na formação de diferentes grupos para caracterização de cultivares de desempenho superior em diferentes variáveis ligadas a produtividade e área foliar necrosada em comparação a análise de médias. As cultivares UPFPS Farroupilha, URS Altiva, IPR Afrodite, FAEM 4 Carlasul, URS Brava e URS Guará, mostram elevadas produtividades e possibilidade de combinações potenciais em programas de melhoramento genético da aveia voltada à redução de uso de fungicida. A análise de regressão múltipla e redes neurais artificiais evidenciam eficiência em processos de simulação envolvendo variáveis controladas e não controladas a partir de indicadores biológicos e ambientais. / 139 f.
Identifer | oai:union.ndltd.org:IBICT/oai:bibliodigital.unijui.edu.br:123456789/4840 |
Date | 13 March 2018 |
Creators | Dornelles, Eldair Fabricio |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UNIJUI, instname:Universidade Regional do Noroeste do Estado do Rio Grande do Sul, instacron:UNIJUI |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0081 seconds