Return to search

Etude du canal de propagation radio pour les systèmes embarqués sans fil automobile / Radio frequency channel modeling in a car for tpms (temperature pressure monitor system)

Les forts besoins en matière d'économie de carburant, de réduction des coûts de maintenance et de diminution des accidents routiers, ont conduit à la conception et à la commercialisation d'une gamme de systèmes embarqués sans fil, installés dans les véhicules roulants terrestres. Or, il faudra surmonter plusieurs défis techniques pour que les divers bénéfices de ses systèmes se réalisent. Ce mémoire de thèse s'est déroulé au sein de l'entreprise Continental Automotive Systems et les laboratoires LAAS et LAPLACE de Centre National de la Recherche Scientifique. Les travaux ont porté sur le canal de propagation radiofréquence dans l'environnement du véhicule pour le système de surveillance de pression des pneumatiques (TPMS) et le système d'accès sans fil (PASE). Ils se sont répartis entre les expérimentations et des études théoriques visant à présenter des modèles efficaces de l'environnement de propagation, d'évaluer la qualité de communication et de proposer des solutions adaptées aux systèmes embarqués sans fil étudiés. Les résultats de simulation et de mesure montrent que nous pouvons bien cerner les mécanismes de propagation mis en jeu dans l'environnement véhicule, et d'adapter en conséquence les solutions protocolaires et antennaires. / The high potential of accident prevention by using an intelligent tire system can be clearly seen through the different accident analysis. It has been shown that adverse road conditions, tire defects or their combination play an important role in road accidents. Moreover the decrease in the number of fatalities, provided that the entire car fleet is equipped with intelligent tire systems, could be significantly improved by preventing at least 10 % of accidents. This would mean that over 4 000 life’s could be saved every year in European countries. The first part of this thesis presents is the TPM (Tire Pressure Monitoring) System, which corresponds to a wireless radiofrequency transmission between a transmitter module (TX) in each tire of the car and a fixed central receiver (RX). The transmitter, next called "Wheel Unit", is composed with different electronic sensors (temperature, pressure, acceleration...) for the detection of the tire inflation status. The data are collected by the receiver where the different wheel unit frames from each tire is decoded by the control unit. Then a graphical display informs the driver with the required pressure and temperature variations. The second investigated system is the wireless car access, which operate the bilateral link LF /RF, by sending the different commands at 315 MHz or 434 MHz. The signals are related to an electronic code featuring the key to control the vehicle (lock/unlock of doors and the trunk release, start of the engine,…). The automotive PAssive Start and Entry system (PASE) module generates a low frequency wake-up message (at 125 kHz) from the car towards the badge, and a RF challenge signal communicates back from the badge to the car at triggering event. The free radio license frequency of 434MHz is chosen for this study. The RF radio-link budget is a keystone of the overall system reliability: the carrier propagation between the wheel unit and the receiver must be effective whatever the ground composition, whatever the angular position or speed of the wheel unit, for each of the four wheel units. Moreover, the system must be insensitive to RF interferences. The transmission between the wheel units and the receiver is tricky because of the many parameters involved. These environment and operating considerations increase the radio-link budget complexity, and contribute to degrade the global transmission quality of the TPM system. The major parameters that impact the TPMS efficiency: System parameters: the system design affects the transmission performances. The frame structure, the modulation schemes and code lines contribute directly or indirectly to increase the BEP (Bit Error Probability), thus the choice of an efficient system strategy is indispensable for the TPMS. Radiofrequency channel: The car body affects considerably the wave propagation, because the data link is not a line-of-sight, and the channel varies rapidly according to the wheel unit positions and the wave trajectories. So, due to the complex and variable environment, the main characteristics of emitted waves also change in phase and power and it produces both destructive and constructive behaviors. Receiver: generally it can be posed near the metallic structure of the car, so the antenna pattern can be corrupted. RF Source effects. To ensure the good reception of the data transmitted from the sensors, a good knowledge of our wireless radio-link channel is mandatory. Thus, the transmitter part of the system must be properly described: the RF source characterization for TPMS –Tire Pressure Monitoring System- is discussed in this thesis. We proposed in the first part an original approach to characterize the source, from the transmitter antenna to the whole wheel system: thus the influence of each element (lumped antenna + rim + tire) is quantified once embedded in the antenna. Several experimental studies are performed in far and near field conditions for a complete characterization.

Identiferoai:union.ndltd.org:theses.fr/2010INPT0110
Date28 September 2010
CreatorsCheikh M'hand, Mohamed
ContributorsToulouse, INPT, David, Jacques, Tartarin, Jean-Guy
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds