Um sistema artificial pode usar raciocínio espacial qualitativo para inferir informações sobre seu ambiente tridimensional a partir de imagens bidimensionais. Inferências realizadas com base em raciocínio espacial qualitativo devem ser capazes de lidar com incertezas. Neste trabalho investigamos a utilização de técnicas probabilísticas para tornar o raciocínio espacial qualitativo mais robusto a incertezas e aplicável a agentes móveis em ambientes reais. Investigamos uma formalização de raciocínio espacial com lógica de descrição probabilística em um subdomínio de tráfego. Desenvolvemos também um método que combina raciocínio espacial qualitativo com um filtro Bayesiano para desenvolver dois sistemas que foram aplicados na auto localização de um robô móvel. Executamos dois experimentos de auto localização; um utilizando a teoria de relações qualitativas percebíveis sobre sombra com filtro Bayesiano; e outro utilizando o cálculo de oclusão de regiões e o cálculo de direção com filtro Bayesiano. Ambos os sistemas obtiveram resultados positivos onde somente o raciocínio espacial qualitativo não foi capaz de inferir a localização do robô. Os experimentos com dados reais mostraram robustez aos ruídos e à informação parcial. / An artificial system can use qualitative spatial reasoning to obtain information about its tridimensional environment, from bi-dimensional images. Inferences produced by qualitative spatial reasoning must be able to deal with uncertainty. This work investigates the use of probabilistic techniques to make qualitative spatial reasoning more robust against uncertainty, and better applicable to mobile agents in real environments. The work investigates a formalization of spatial reasoning using probabilistic description logics in a traffic domain. Additionally, a method is presented that combines qualitative spatial reasoning with a Bayesian filter, to develop two systems that are applied to self-localization of mobile robots. Two experiments are described; one using the theory of perceptual qualitative relations about shadows; the other using occlusion calculus and direction calculus. Both systems are combined with a Bayesian filter producing positive results in situations where qualitative spatial reasoning alone cannot infer robot location. Experiments with real data show robustness to noise and partial information.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-23122014-141015 |
Date | 27 February 2014 |
Creators | Valquiria Fenelon Pereira |
Contributors | Fabio Gagliardi Cozman, Leliane Nunes de Barros, Kate Cerqueira Revoredo, Paulo Eduardo Santos, José Reinaldo Silva |
Publisher | Universidade de São Paulo, Engenharia Mecânica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds