Return to search

Treatment planning and dosimetric verification of cyberknife prostate SBRT (stereotactic body radiation therapy) on an MR-based 3D prostate model imaging insert in a pelvis phantom

Purpose of this study was to validate a novel CyberKnife stereotactic body radiotherapy (SBRT) treatment planning on an MRI-based 3D prostate model insert in an anthropomorphic pelvis phantom using Gafchromic EBT3 films to perform dosimetric measurements. The methodology of this study is based on a pelvis phantom and a physical printed 3D model of the prostate with dominant intra-prostatic-lesion and surrounding organs at risk segmented from a patient MR images. Cyberknife prostate treatment planning was performed to have at least 95% the planning target volumes (PTV: prostate expanded with margins of 5 mm in all directions except 3 mm posteriorly) covered by 3625 cGy (725x5) and a simultaneous dose escalation to 4750 cGy on the dominant intra-prostatic-lesion. Plan dosimetry verification was performed using Gafchromic EBT3 films on a Stereotactic Dose Verification Phantom. First, film calibration was done on Gafchromic EBT3 films exposed to various doses of 0-2500 cGy based on a LINAC (Trilogy) and CyberKnife monthly quality assurance (QA) for machine output calibration. Second, absolute dose measurements were taken by using films within the dose range 0-2250 cGy. Third, Gafchromic EBT3 films were placed in coronal and sagittal planes on the standard “blue phantom” or Stereotactic Dose Verification Phantom (SDVP) on which one fraction of the treatment plan is delivered for verification measurements. Then, on the prostate-pelvis phantom, a dosimetry inserts were used with films through the DIL region. After the calibration, the accuracy of absolute dose measurements with EBT3 was verified to be ≤ 1% in the dose range of interest (500-1500 cGy). On the SDVP phantom, comparison of films vs. plan for the coronal plane yielded ≥ 99.7% passing rates while for sagittal plane yielded ≥ 95.3% passing rates under the gamma criteria of ≤ 2% in dose and ≤ 2mm in distance to agreement (DTA). This study demonstrated that it is feasible to plan and deliver a SBRT treatment to prostate with a simultaneous dose escalation to the dominant intra-prostatic lesion.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/16805
Date17 June 2016
CreatorsAlshammari, Meshari Turki
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0022 seconds