Content distribution is the primary
function of the Internet today.
Technologies like multicast and
peer-to-peer networks hold the potential
to serve content to large populations in
a scalable manner. While multicast
provides an efficient transport
mechanism for one-to-many and
many-to-many delivery of data in an
Internet environment, the peer-to-peer
networks allow scalable content location
and retrieval among large groups of
users in the Internet.
Incorporating quality-consciousness in
these technologies is necessary to
enhance the overall experience of
clients. This dissertation focuses on
the architectures and mechanisms to
enhance multicast and peer-to-peer
content distribution through
quality-consciousness. In particular,
the following aspects of
quality-consciousness are addressed: 1)
client latency, 2) service
differentiation, and 3) content quality.
Data analysis shows that the existing
multicast scheduling algorithms behave
unfairly when the access conditions for
the popular files changes. They favor
the popular files while penalizing the
files whose access conditions have not
changed. To maintain the client latency
for all files under dynamic access
conditions we develop a novel multicast
scheduling algorithm that requires no
change in server provisioning.
Service differentiation is a desirable
functionality for both multicast and
peer-to-peer networks. For multicast,
we design a scalable and low overhead
service differentiation architecture.
For peer-to-peer networks, we focus on a
protocol to provide different levels of
service to peers based on their
contributions in the system.
The ability to associate reliable
reputations with peers in a peer-to-peer
network is a useful feature of these
networks. Reliable reputations can help
establish trust in these networks and
hence improve content quality. They can
also be used as a substrate for a
service differentiation scheme for these
networks. This dissertation develops
two methods of tracking peer reputations
with varying degrees of reliability and
overheads.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/4766 |
Date | 23 July 2004 |
Creators | Gupta, Minaxi |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | 922254 bytes, application/pdf |
Page generated in 0.0017 seconds