<p>The decision making processes in today's manufacturing systems represent very complex and challenging tasks. The desired flexibility in terms of the functionality of a machine adds more components to the machine. The real time monitoring and reporting generates large streams of data. However the intelligent and real time processing of this large collection of system data is at the core of the manufacturing decision support tools. </p>
<p>This thesis outlines the use of Frequent Episodes in Event Sequences and Hidden Markov Modeling of throughput, quality and maintenance data to model the deterioration of performance in the components that make up the manufacturing system. The thesis also introduces the concept of decision points and outlines how to integrate the total cost function in a business model. </p>
This thesis deals with the following three topics:
<p>First, the component-based data structure of the manufacturing system is outlined especially throughput, quality and maintenance data. In this approach, the manufacturing system is considered as a group of components that interact with each other and with raw materials to produce the manufactured product. This interaction creates a considerable amount of data which can be associated with the relevant components of the system. The relations between the manufacturing components are established on a physical and logical basis. The components properties are clearly defined in database tables specifically created for this application. The thesis also discusses the web services in manufacturing systems and the portable technologies used in plant decision support tools. </p>
<p>Second, the thesis presents a novel application of Frequent Episodes in Event Sequences to identify patterns in the deterioration of performance in a component using frequent episodes of operational failures, quality failures and maintenance activities. A Hidden Markov Model (HMM) is used to model each deterioration episode to estimate the states of performance and the transition rates between the states. The thesis compares the results generated by this model to other existing models of component performance deterioration while emphasizing the benefits ofthe proposed model through the use of the plant data.</p>
<p>Finally the thesis presents a methodology usmg HMM probability distributions and Bayesian Decision theory framework to provide a set of decisions and recommendations under the condition of data uncertainty. The results of this analysis are then integrated in the plant maintenance business model.</p> <p>It is worthwhile mentioning that to develop the techniques and validate the results in this research; a Manufacturing Execution System (MES) was developed to operate in an automotive engine plant. All the data and results in this research are based on the plant data. The MES which was developed in this research provided significant benefits in the plant and was adapted by many other GM plants around the world.</p> / Thesis / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16692 |
Date | 04 1900 |
Creators | Shadid, Basel |
Contributors | Elbestawi, Mohamed A., Veldhuis, Stephen C., Mechanical Engineering |
Source Sets | McMaster University |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds