Return to search

Performance improvement for mobile ad hoc cognitive packets network

In this thesis, focusing on the quality of service (QoS) improvement using per-packet power control algorithm in Ad Hoc Cognitive Packet Networks (AHCPN). A power control mechanism creates as a network-assisted function of ad hoc cognitive packet-based routing and aims at reducing both energy consumption in nodes and QoS requirements. The suggested models facilitate transmission power adjustments while also taking into account the effects on network performance. The thesis concentrate on three main contributions. Firstly, a power control algorithm, namely the adaptive Distributed Power management algorithm (DISPOW) was adopted. Performance of DISPOW was compared to existing mechanisms and the results showed 27, 13, 9, and 40 percent improvements in terms of Delay, Throughput, Packet Loss, and Energy Consumption respectively. Secondly, the DISPOW algorithm was enhanced, namely a Link Expiration Time Aware Distributed Power management algorithm (LETPOW). This approach periodically checks connectivity, transmission power, interference level, routing overhead and Node Mobility in AHCPN. The results show that LETPOW algorithm improves the performance of system. Results show further improvement from DISPOW by 30,25,30,42 percent in terms of delay, packet loss ratio , path lengths and energy consumption respectively. Finally,Hybrid Power Control Algorithm (HLPCA) has presented is a combination of Link Expiration Time Aware Distributed Power management algorithm (LETPOW) and Load Power Control Algorithm (LOADPOW); deal with cross-layer power control applied for transmitting information across the various intermediate layers. LOADPOW emphasis on the concept of transmission Power, Received Signal Strength Indication (RSSI), and the suitable distance between the receiver and the sender. The proposed algorithm outperforms DISPOW and LETPOW by 31,15,35,34,44 percent in terms of Delay, Throughput, Packet Loss,path length and Energy Consumption respectively. From this work, it can be concluded that optimized power control algorithm applied to Ad-hoc cognitive packet network results in significant improvement in terms of energy consumption and QoS.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:765052
Date January 2018
CreatorsAl-Turaihi, Firas Sabah Salih
ContributorsAl-Raweshidy, H. ; Li, M.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/17123

Page generated in 0.0019 seconds