The Quality of Service (QoS) routing approach is gaining an increasing interest in the Internet community due to the new emerging Internet applications such as real-time multimedia applications. These applications require better levels of quality of services than those supported by best effort networks. Therefore providing such services is crucial to many real time and multimedia applications which have strict quality of service requirements regarding bandwidth and timeliness of delivery. QoS routing is a major component in any QoS architecture and thus has been studied extensively in the literature. Scalability is considered one of the major issues in designing efficient QoS routing algorithms due to the high cost of QoS routing both in terms of computational effort and communication overhead. Localized quality of service routing is a promising approach to overcome the scalability problem of the conventional quality of service routing approach. The localized quality of service approach eliminates the communication overhead because it does not need the global network state information. The main aim of this thesis is to contribute towards the localised routing area by proposing and developing some new models and algorithms. Toward this goal we make the following major contributions. First, a scalable and efficient QoS routing algorithm based on a localised approach to QoS routing has been developed and evaluated. Second, we have developed a path selection technique that can be used with existing localized QoS routing algorithms to enhance their scalability and performance. Third, a scalable and efficient hierarchical QoS routing algorithm based on a localised approach to QoS routing has been developed and evaluated.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:553930 |
Date | January 2009 |
Creators | Mustafa, Elmabrook B. M. |
Contributors | Not given |
Publisher | University of Bradford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10454/4288 |
Page generated in 0.0024 seconds