Several machine learning applications use classifiers as a way of quantifying the prevalence of positive class labels in a target dataset, a task named quantification. For instance, a naive way of determining what proportion of positive reviews about given product in the Facebook with no labeled reviews is to (i) train a classifier based on Google Shopping reviews to predict whether a user likes a product given its review, and then (ii) apply this classifier to Facebook posts about that product. Unfortunately, it is well known that such a two-step approach, named Classify and Count, fails because of data set shift, and thus several improvements have been recently proposed under an assumption named prior shift. However, these methods only explore the relationship between the covariates and the response via classifiers and none of them take advantage of the fact that one often has access to a few labeled samples in the target set. Moreover, the literature lacks in approaches that can handle a target population that varies with another covariate; for instance: How to accurately estimate how the proportion of new posts or new webpages in favor of a political candidate varies in time? We propose novel methods that fill these important gaps and compare them using both real and artificial datasets. Finally, we provide a theoretical analysis of the methods. / Muitas aplicações de aprendizado de máquina usam classificadores para determinar a prevalência da classe positiva em um conjunto de dados de interesse, uma tarefa denominada quantificação. Por exemplo, uma maneira ingênua de determinar qual a proporção de postagens positivas sobre um determinado protuto no Facebook sem ter resenhas rotuladas é (i) treinar um classificador baseado em resenhas do Google Shopping para prever se um usuário gosta de um produto qualquer, e então (ii) aplicar esse classificador às postagens do Facebook relacionados ao produtos de interesse. Infelizmente, é sabido que essa técnica de dois passos, denominada classificar e contar, falha por não levar em conta a mudança de domínio. Assim, várias melhorias vêm sendo feitas recentemente sob uma suposição denominada prior shift. Entretanto, estes métodos exploram a relação entre as covariáveis apenas via classificadores e nenhum deles aproveitam o fato de que, em algumas situações, podemos rotular algumas amostras do conjunto de dados de interesse. Além disso, a literatura carece de abordagens que possam lidar com uma população-alvo que varia com outra covariável; por exemplo: Como estimar precisamente como a proporção de novas postagens ou páginas web a favor de um candidato político varia com o tempo? Nós propomos novos métodos que preenchem essas lacunas importantes e os comparamos utilizando conjuntos de dados reais e similados. Finalmente, nós fornecemos uma análise teórica dos métodos propostos.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08082019-101051 |
Date | 17 May 2018 |
Creators | Vaz, Afonso Fernandes |
Contributors | Izbicki, Rafael |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds