Carotid atherosclerosis, one of the leading causes of ischemic stroke worldwide, can induce severe narrowing or even occlusion of the vessel, restricting blood flow to the brain and resulting in perfusion deficits. The plaque that has a high probability of undergoing rapid progression or future ruptures is defined as “vulnerable plaque”. Identifying vulnerable plaque is of great importance in clinical carotid atherosclerosis imaging. To date, a multi-contrast magnitude-based MR approach with blood suppression technique has been widely used to detect vulnerable plaque features. However, due to the limitations of magnitude-based methods, developing new MR techniques that have better sensitivity to hemorrhage and calcification is of great interest.
Quantitative Susceptibility Mapping (QSM) is a technique that utilizes the MR phase information and has been widely used for quantifying the tissue susceptibility in the brain. The susceptibility contrast is extremely sensitive to hemorrhage and calcium which makes QSM a potential tool for carotid plaque imaging to identify intraplaque hemorrhage (IPH) and calcification. However, existing QSM methods have not been successfully implemented in the neck due to several challenges. The presence of air/tissue interface, plaque that has high susceptibility, and fat surrounding the carotid arteries can cause severe phase aliasing and other problems that will induce errors in the resultant susceptibility maps.
To overcome these challenges and thus, develop a robust method for carotid QSM, a protocol that includes both data acquisition strategy and post-processing methods is proposed. For data acquisition, four echoes including two water/fat in-phase echoes and two water/fat out-of-phase echoes were collected. For data post-processing, temporal domain algorithm Catalytic Multiecho Phase Unwrapping Scheme (CAMPUS) was used to unwrap the phase images and local QSM was proposed. This protocol is able to properly unwrap the phase images even with the presence of high susceptibility plaque and eliminate the water/fat chemical shift effect in QSM reconstructions which will generate reliable susceptibility maps. From our results, the proposed QSM protocol has demonstrated the ability to generate reliable susceptibility maps and excellent sensitivity to IPH and calcification. Combining QSM with existing magnitude-based methods will lead to a major improvement in the diagnosis of carotid atherosclerosis. / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21049 |
Date | 03 February 2017 |
Creators | Wang, Chaoyue |
Contributors | Haacke, E. Mark, Biomedical Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0013 seconds