Le travail de thèse présenté dans ce manuscrit traite du développement de dispositifs à base de dioxyde de vanadium VO₂ et de méta-surfaces dans le moyen infrarouge pour des applications passives et une intégration sur des lasers à cascade quantique (QCL). Ce travail a permis l'élaboration de nouvelles conditions de dépôt du matériau à changement de phase VO₂ par ablation laser pulsé à des températures compatibles avec les hétérostructures de III-V utilisées en optoélectronique. Les caractérisations des couches minces déposées montrent un changement de la réflectivité et de la conductivité électrique entre l'état isolant à basse température et l'état métallique à haute température autour de 68°C (341 K). Des développements ont ensuite été menés sur l'emploi d'un réseau de méta-surfaces permettant d'obtenir une couche homogène d'indice de réfraction effectif résonnant. Ces méta-surfaces sont constituées de résonateurs à anneau fendu dont la fréquence de résonance peut être ajustée par le choix de leurs paramètres géométriques et des matériaux les constituant. Une modulation optique de plus de 100cm-1 du pic de la résonance a été obtenue lors de la transition de phase avec des méta-surfaces déposées sur un film de VO₂. Ce résultat est très prometteur pour la conception de dispositifs monolithiques, robustes, compacts, accordables en fréquence et dont les propriétés optiques ne dépendent que de la température de la couche de VO₂.Enfin, ce travail étudie la fonctionnalisation des QCL dans le moyen infrarouge (7-8 µm) par des couches de VO₂ et de méta-surfaces. Il vise à comprendre l’influence des couches intégrées sur les propriétés d’émission. Afin de garantir une bonne interaction entre ces couches et le mode guidé du laser tout en ayant des pertes optiques faibles, des nouveaux guides d'onde ont été modélisés, puis les premiers QCL à base de VO₂ ont été démontrés et une température maximale de fonctionnement de 334 K a été mesurée. / The thesis work presented in this manuscript deals with the development of vanadium dioxide VO₂ and meta-surfaces based devices in the mid-infrared for passive applications and an integration on quantum cascade lasers (QCL).This work enabled the elaboration of new deposition conditions for the VO₂ phase change material by pulsed laser ablation at temperatures compatible with III-V heterostructures used in optoelectronics. The characterizations of the VO₂ coated thin films show a change in reflectivity and in electric conductivity between the insulating state at low temperature and the metallic state at high temperature around 68°C (341 K).Developments were then carried out on the use of a meta-surfaces array in order to obtain an homogeneous layer of resonant effective refractive index. These meta-surfaces are constituted by split-ring resonators, whose resonance frequency can be adjusted by choosing their geometric parameters and the materials they are made of. An optical modulation of more than 100cm-1 of the resonance peak has been obtained during the phase transition with meta-surfaces deposited on a VO₂ layer. This result is very promising for the conception of monolithic, robust, compact, frequency tunable devices and whose optical properties only depend on the VO₂ layer temperature.Finally, this work studies the functionalization of mid-infrared QCL (7-8 µm) with VO₂ and meta-surfaces layers. It aims at understanding the influence of the integrated layers on the emission properties. In order to ensure a good interaction between these layers and the laser guided mode while having low optical losses, new waveguides were modeled, then the first VO₂ based QCL have been demonstrated and a maximum operating temperature of 334 K has been measured.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLS150 |
Date | 05 July 2019 |
Creators | Boulley, Laurent |
Contributors | Paris Saclay, Colombelli, Raffaele |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds