Return to search

Monte-Carlo simulation study of problems of quantum field theory and critical phenomena.

In chapter one, we explain briefly the continuum limit, scaling, and high temperature expansion of critical phenomena, Monte Carlo algorithms and fitting. In chapter two, different continuum limits of the Ising model in dimensions (D) 2, 3 and 4 are investigated numerically. The data indicate that triviality occurs for D = 4 and fails for D < 4 in each limit. In chapter three, a relation between the critical exponents of the leading and confluent scaling terms is derived using the finite size scaling argument. We also determine the new scaling variable of the 4D Ising model based on a new Monte Carlo simulation data. In chapter four, a Monte Carlo study of two dimensional diluted Ising systems is reported. It is shown that regular dilution does not affect critical exponents, while a random one does, with critical exponents varying continuously with impurity concentration. The importance of fluctuations in producing such effects is emphasized. In chapter five, a different point of view regarding the critical exponent of the specific heat of the 3D Ising model is presented. Based on the analysis of high temperature expansion, finite size scaling and Monte Carlo data in the symmetric phase of the 3D Ising model, it is shown that logarithmic scaling behavior of specific heat is more consistent than power scaling behavior.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/185853
Date January 1992
CreatorsKim, Jae-Kwon.
ContributorsPatrascioiu, Adrian, Stein, D., Hasenfratz, A., Scadron, M., Bowen, T.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0169 seconds