In this thesis for the degree of Master of Science from Stockholm University we explore the ideas of Symmetric Informationally Complete Positive Valued Measures (SIC-POVMs; commonly just SICs). This is an emerging concept in quantum information theory with ambitious claims, such as being a candidate for standard measurements [23] and perhaps being of importance to error correcting universal quantum computing [32]. While the definition of a SIC is exceedingly simple they have proven notoriously hard to find. This thesis explores new approaches to finding SICs. It is our ambition that this thesis shall provide the reader unfamiliar with SICs with a thorough introduction to the subject along with both the necessary quantum theory and group theory. We also hope to intrigue the reader already attuned to SICs by establishing a link between how close to a SIC a state is and how close to a MUS (Minimum Uncertainty State) it is. This is the main result of this thesis and we leave the reader with several open questions relating to this discovery to provoke further scrutiny of the matter. The thesis is divided into two parts: the first part provides the necessary background and theory; while the second part presents our results. There are also three appendices attached to this thesis where we delve into a discussion about computing power and also present some of the code used. Being appendices these are not essential to the thesis per se – they are rather supplied as a reference for the curious reader who might be interested in recreating some of our results.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-168921 |
Date | January 2015 |
Creators | Andersson, David |
Publisher | Stockholms universitet, Fysikum |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds