Introduced by C.C. Chang in the 1950s, MV algebras are to many-valued (Łukasiewicz) logics what boolean algebras are to two-valued logic. More recently, effect algebras were introduced by physicists to describe quantum logic. In this thesis, we begin by investigating how these two structures, introduced decades apart for wildly different reasons, are intimately related in a mathematically precise way. We survey some connections between MV/effect algebras and more traditional algebraic structures. Then, we look at the categorical structure of effect algebras in depth, and in particular see how the partiality of their operations cause things to be vastly more complicated than their totally defined classical analogues. In the final chapter, we discuss coordinatization of MV algebras and prove some new theorems and construct some new concrete examples, connecting these structures up (requiring a detour through effect algebras!) to boolean inverse semigroups.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/35173 |
Date | January 2016 |
Creators | Lu, Weiyun |
Contributors | Scott, Philip |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0092 seconds